

MPEG-Based Image Enhancement for the Visually Impaired: Implementation on a General-Purpose PC Platform

Matthew Fullerton*+ and Eli Peli*

*The Schepens Eve Research Institute, Harvard Medical School, Boston +Dept, of Electronics, University of York, UK

ABSTRACT

A real-time contrast enhancement algorithm for MPEG was implemented, demonstrating that the concepts proposed by Kim & Peli (SID 2003) are computationally efficient enough to run on a general purpose PC. The application supports further research into the effectiveness of the technique for those with visual impairments.

BACKGROUND

Image Enhancement

- Decreases in contrast sensitivity at high spatial frequencies are common in people with low vision.

- Image enhancement to compensate for these losses was first proposed by Peli & Peli[1] in 1984.

DiaiVision ® implementation of Peli & Peli algorithm (enhanced portion on the right)

MPEG-2 Video Encoding

- Developed for "Generic coding of moving pictures".
- Compresses video to bandwidths for DVD/broadcast.

- Pictures divided into luminance and chrominance blocks.

- Best matches between successive blocks are found; differences and motion vectors computed. - Spatial blocks (intra) and

difference blocks (inter) are transformed using a 2D DCT.

 Transformed blocks are quantized using 8x8 matrices.

- This results in many zeroes; allows run-length & Huffman coding, reducing bit stream size.

26 27 29 34 38 46 56 69 7 29 35 38 46 56 69 83 Intra-block Q-matrix

16 19 22 26 27 29 34

16 22 24 27 29 34 37

22 26 27 29 34 34 38

22 26 27 29 34 37 40

2 26 27 29 32 35 40 48

6 27 29 32 35 40 48 58

- Decoding performs the reverse process, multiplying the data by the quantization matrix before the inverse DCT operation is performed. Pictures are reassembled.

MPEG-2 Enhancement

- The diagonals of values in the DCT-domain are arranged in increasing spatial frequency.

- By multiplying some of these values by a coefficient during de-quantization, we can amplify spatial frequencies not visible to those with low vision

technique has been - The implemented previously[2] by processing MPEG-2 files to modify the quantization matrices.

- It was argued[2] that it would be simple to implement the technique in real time.

filter used previously[2]

Decoder programming

- libmpeg2 is an open-source software library to decode MPEG-2 streams, written in C.

- Dequantization functions were modified to implement the algorithm, at the block level.

Decoder Control

- We created an interface to alter all of the parameters affecting our decoder, as shown below.

- The interface can be used as a simple real-time control for the implementation of the previous method, a matrix-level research interface, or a mixture of both.

Individual Coefficient Control	
Use preset coefficients	
Do not enhance	L*A
Set manually, for direct effect, or for scaling purposes (see Scaling, below)	
SEEI Matries Editore - talleng latera Matrix 13 12 13 14 15 15 16 17 18	

Scaling

An up/down control allows us to adjust the enhancement for either,

the original filter:

multiple coefficients = ?, some = ?.a,

or new custom filters:

each coefficient = (manually set value x ?) +1.

These controls can also be adjusted using the remote control handset.

Media Player Integration

- The libmpeg2 decoder has already been integrated into more complete software "media players", an example being the "VideoLAN Client" (VLC).

- We recompiled VLC with the modified decoder.

- This allows raw MPEG-2 ES streams extracted from higher level media such as DVDs to be passed to the library for decoding, enhancing this material.

IMPACT

Our implementation, within the decoder, improved functionality compared to the previous[2] method;

- Enhancement of luminance components only
- Enhancement of portions of the picture only

coefficients along the upper-left to lower-right diagonal axis of increasing spatial frequency.

'grid' without losing the contents of the filter.

- If a new preferred position is found, the button 'Redefine' can be used to set the currently used 8x8 as that for further shifts

Partial Enhancement

Adaptation, whereby the viewer's vision becomes adapted to an enhancement and perceives it as the normal level[3] might prevent subjects from appreciating enhanced images

The interface can set parameters such that a corner, half (right) or 'ring' will be unenhanced.

- The effect of the apparent to the viewer

Partial Screen Enhancement

Edge Ringing

- The flexible interface has facilitated the development of better filters.

THE UNIVERSITY of York

- The previous enhancement exhibited ringing artifacts at sharp edges. Our newer filters have significantly reduced these artifacts.

(a) Example of new filter (b) Previous (?=7) filter The edge ringing was especially noticeable on text.

Motion Artifacts

We have reduced motion artifacts by deinterlacing using an appropriate filter (below) or a television screen.

(a) Interlacing artifacts present in video (b) These are highlighted by enhancement (c) Deinterlacing the video reduces these (The effect is especially noticeable within the circled regions)

FUTURE PLANS

We are studying patient impressions of the enhancement. Patients will be given the opportunity to adjust the enhancement level in real time using a remote control as a selection of videos are played.

Acknowle

System in Testing

Supported in part by NIH grants EY05957 and EY12890 [1] E. Peli and T. Peli. "Image enhancement for the visually impaired." Optical Engineering 23/1, 47-51

[2] J. Kim, A. Vora and E. Peli, "MPEG-based image enhancement for the visually impaired," Optical Engineering, 43/6, 1318-1328 (2004)

[3] M. A. Webster, M. A. Georgeson and S.M. Webster, "Neural adjustments to image blur," Nature Neuroscience. 5/9, 839-840 (2002).

enhancement is now always

Filter Shifts

The real-time nature of the system allowed us to solve two large long term problems with edges and motion.

We required the ability to move the entire set of

- An 8x8 'filter' can be completely moved off the used