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MOTION PARALLAX IN OBJECT RECOGNITION

STATEMENTAS TO FEDERALLY SPONSORED RESEARCH

The inventions described herein were made with Government support under

Department of Defense grant number W81XWH-16-1 -0033. The Government has certain

rights in the inventions.

TECHNICAL FIELD

This disclosure relates to imaging systems and methods to address visual impairment

and rehabilitation.

BACKGROUND

According to the World Health Organization, an estimated 39 million people

worldwide are blind. In the United States, 1.2 million people are legally blind and -10% of

them are functionally blind. Their numbers are projected to grow in the coming decades.

Although blind people can access text through braille and text-to-speech, mobility indoors

and outside is limited, dangerous, and largely depends on the long cane. Blindness also limits

numerous other activities of daily living, particularly tasks requiring visual search and object

recognition. As a result, many pursuits (vocational and social) are limited, especially for the

acquired blind whose blindness occurs in adulthood. Restoration of vision through

prostheses for restoring functional vision in blind users may address many of these

difficulties.

SUMMARY

The systems and methods disclosed herein use motion parallax to provide reliable

depth cues for rendering images with a cluttered background for artificial vision, e.g.,

prosthetic or computer vision or visual sensory substitution devices, and thus improve object

recognition. Most prosthetic visual devices use a head-mounted video camera to acquire

high-resolution images and convert those images to a low resolution and low dynamic range

format for electrodes to display on a user's sensory receptors, such as on the, skin, tongue,

retina, and/or visual cortex. Due to the low resolution, the utility of current devices is limited

especially when video signals from a cluttered environment are merged together.

In one aspect, systems for providing information about an environment to a user

within the environment include a detection apparatus configured to obtain depth and image

information about the environment, and an electronic processor in communication with the



detection apparatus. The depth and image information includes data relating to potential

objects of interest at multiple distances relative to a position of the user within the

environment. The electronic processor is configured to obtain, from the depth and image

information, a set of one or more depth planes containing the potential objects of interest, and

receive input including a user selection of an object of interest from among the potential

objects of interest. The electronic processor is further configured to provide output to guide

the user to move the detection apparatus to position the object of interest near a reference

point on a field of view of the detection apparatus, obtain multiple images of the object of

interest during the user's movement of the detection apparatus, and crop each of the images

to keep the object of interest near a reference point on each of the images.

In another aspect, the disclosure features methods of providing information about an

environment to a user within the environment that include obtaining, using a detection

apparatus, depth and image information about the environment. The depth and image

information includes data relating to potential objects of interest at multiple distances relative

to a position of the user within the environment. The methods further include obtaining, from

the depth and image information, a set of one or more depth planes containing the potential

objects of interest to the user, and receiving input including a user selection of an object of

interest from among the potential objects of interest. The methods further include providing

output to guide the user to move the detection apparatus to position the object of interest near

a center of a field of view of the detection apparatus, obtaining multiple images of the object

of interest during the user's movement of the detection apparatus, and cropping each of the

images to keep the object of interest near a center of each of the images.

Certain implementations of the systems and methods can include one or more of the

features described below and elsewhere herein.

In some implementations, the systems further include motion sensors. The motion

sensors can be configured to measure motions and displacements of the detection apparatus.

The motion sensors can be configured to measure an initial position of a head of the user

when the user selects the object of interest. The electronic processor can be configured to

provide output to guide a lateral shift of a head of the user to adjust a position of the field of

view, and the motion sensors can be configured to measure a distance of the lateral shift

relative to the initial position of the head.

In some implementations, the methods further include detecting motions and

displacements of the detection apparatus. The methods can further include providing an



output to guide a lateral shift of a head of the user to adjust a position of the field of view, and

measuring a distance of the lateral shift of the head relative to an initial position of the head.

In some implementations, the electronic processor is configured to adjust a position of

the field of view by a distance substantially matching a distance of a lateral shift of a head of

the user. The electronic processor can be configured to calculate a principal rotation angle of

a principal ray for the object of interest from the head after the lateral shift, and a distance of

the object of interest from the detection apparatus. The electronic processor can be

configured to crop each of the images based on the principal rotation angle and present each

resulting cropped image to the user.

In some implementations, the methods further include adjusting a position of the field

of view by a distance substantially matching a distance of a lateral shift of a head of the user.

The methods can further include calculating an angle representing a principal rotation angle

of a principal ray for the object of interest from the head after the lateral shift.

In some implementations, the electronic processor is configured to identify portions of

the images that correspond to the object of interest by identifying a feature of the obj ect of

interest, and cropping each of the images such that the object of interest is near the center of

the each of the images. The electronic processor can be configured to present each resulting

cropped image to the user. In some implementations, cropping each of the images includes

cropping each of the images based on the principal angle of the principal ray, and presenting

each resulting cropped image of the object of interest to the user.

In some implementations, the methods further include identifying portions of the

images that correspond to the object of interest by identifying a feature of the object of

interest, and cropping each of the images such that the object of interest is near the center of

each of the images. In some implementations, the methods further include presenting each

resulting cropped image to the user.

In some implementations, the detection apparatus includes a depth camera system

including one or more of a light-field camera, stereo camera, IR-based depth camera, or a

multiple camera array.

In some implementations, the depth and image information includes a set of depth

sliced images each corresponding to a depth plane at a different distance relative to the

position of the user. The depth sliced images can include confocal images.

In some implementations, the one or more depth planes are positioned at one or more

distances relative to the position of the user within the environment. The one or more

distances can be within a range bounded by a minimum distance value. In some



implementations, the one or more depth planes are positioned at one or more distances

relative to the position of the user within the environment. The one or more distances can be

within a range bounded by a maximum distance value.

In some implementations, the electronic processor is configured to obtain the one or

more depth planes by determining an operating mode associated with the system. In some

implementations, the electronic processor is further configured to convert the images into

electrical signals, and to transmit the electrical signals to a visual prosthesis worn by the user.

In some implementations, the methods further include converting the images into

electrical signals, and transmitting the electrical signals to a visual prosthesis worn by the

user.

In some implementations, the systems further include an input interface configured to

receive input information from the user and to transmit the input to the electronic processor

based on the input information. The input interface can include a controller mounted to a

cane. The input interface can include a voice-activated interface. In some implementations,

the controller is configured to track the object of interest in a depth plane. In some

implementations, the reference point on the field of view is a center of the field of view, and

the reference point on each of the images is a center of each of the images.

In another aspect, the disclosure provides methods carried out by the systems

described and illustrated herein, and described in further detail below.

Embodiments of the systems and methods disclosed herein also include all of the

other features or steps disclosed herein, including features or steps disclosed in connection

with different embodiments, in any combination as appropriate.

As used herein, the term "field of view" or "FoV" means the field of view of an image

detection device, such as an optical sensor, a camera, a depth camera, or other appropriate

image detection device.

As used herein, the term "visual field" or "VF" means the visual field displayed by a

visual prosthetic device or sensory substitution device stimulator to the user.

As used herein, the term "camera" can refer to any image capturing device, including

video cameras.

As used herein, the term "depth camera" can refer to any device that can capture

depth information, including a stereo camera, IR-based depth camera (structured light or

time-of-flight), light-field camera, multi camera array, or other appropriate device that can

capture depth information.



The new systems and methods provide several advantages, including improved clarity

of objects of interest (OIs) to a user of a prosthetic visual system. Compared to systems that

do not implement the methods disclosed herein, the systems and methods disclosed herein

can reduce interpretation times significantly and permit more active exploration of a user's

environment. The user can more easily interact with the environment and more easily

visually discern objects in the environment.

In the present disclosure, various embodiments are discussed for purposes of

illustration. In general, however, the features and steps associated with the various

embodiments are not specific to those embodiments unless otherwise noted, and can be

combined with other features and steps. Accordingly, the present disclosure is not limited to

the specific combinations of features and steps described, but also encompasses other

combinations of the features and steps disclosed herein, except where indicated otherwise.

Unless otherwise defined, all technical and scientific terms used herein have the same

meaning as commonly understood by one of ordinary skill in the art to which this disclosure

belongs. Although methods and materials similar or equivalent to those described herein can

be used in the practice or testing of the subject matter herein, suitable methods and materials

are described below. All publications, patent applications, patents, and other references

mentioned herein are incorporated by reference in their entirety. In case of conflict, the

present specification, including definitions, will control. In addition, the materials, methods,

and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments are set forth in the accompanying drawings

and the description below. Other features and advantages will be apparent from the

description, drawings, and claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of an embodiment of an imaging system.

FIGS. 2A-2D are schematic diagrams showing apparent motion of relatively close and

distant objects due to the lateral motion of a viewer (FIGS. 2A and 2B) or due to the lateral

motion and simultaneous eye rotation of a viewer (FIGS. 2C and 2D).

FIG. 3 is a flow chart showing a series of steps for delivering information about a

user's environment to the user using an imaging system.

FIG. 4 is a flow chart showing a series of sub-steps for delivering information about a

user's environment to the user using an imaging system.

FIGS. 5A and 5B are schematic drawings illustrating some of the sub-steps of FIG. 4 .



FIG. 6 is a flow chart showing a series of sub-steps for delivering information about a

user's environment to the user using an imaging system.

FIGS. 7A-7D are schematic drawings illustrating sub-steps of FIG. 6 .

FIGS. 8A-8E are drawings illustrating a field of view and resulting visual field of

typical prior art prosthetic visual devices as the field of view translates laterally.

FIGS. 9A-9E are drawings illustrating a field of view and resulting visual field of

prosthetic visual devices and methods described herein as the field of view translates

laterally.

FIGS. 10A and 10B are schematic diagrams showing imaging systems at least

partially integrated into a hat and eyeglass frames, respectively.

FIGS. 11A and 1IB are graphs showing the effect of pixel count and distance

between an observer and an object of interest on the critical distance between an object of

interest and background.

FIG. 12 is a graph showing recognition rates by users in various viewing conditions.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

The systems and methods disclosed herein acquire and crop video camera images

around a foreground OI to stabilize the OI at a reference point on a visual field of a viewer,

such as a center of the visual field, a center of a quadrant of the visual field, a predefined

location on the visual field, or other appropriate reference opint . These systems and methods

enable the user to take advantage of motion parallax in visually distinguishing the OI (no

motion with head movement) from background clutter (motion corresponding with head

movement) such that the OI does not move and the background clutter moves with head

movement. These systems and methods thus improve object recognition for video-based

artificial vision, e.g., prosthetic vision or visual sensory substitution devices.

Most prosthetic visual devices use a head-mounted video camera to acquire high-

resolution images and convert those images to a low resolution and low dynamic range

format for electrodes to display on a user's sensory receptors, such as on the tongue, retina,

and cortex. Due to the low resolution, the utility of current devices is limited especially when

video signals from a cluttered environment are all merged together. The applicability of

motion parallax in prior systems to improve object recognition has been limited due to the

lack of a vestibular-ocular reflex like mechanism in such systems to stabilize the OI at the

center of visual field in the narrow visual field of these systems. In the systems described



herein, these limitations are overcome by dynamically cropping camera images around the 0 1

and thus repositioning the 0 1proximate a reference point in the images, e.g., a center of the

images, a center of a quadrant of the images, a predefined location on the images, or other

appropriate reference point in the images. This process can mimic the function of the

vestibular ocular reflex in normal vision. The proposed systems achieve stable 0 1

representations at the center of the visual field while cluttering detail from other depth planes

are presented with varying levels of motion when the user undertakes lateral head movement.

This disclosure features systems and methods for providing to a user information

about the user's environment. In particular, for vision-impaired users, e.g., severely vision-

impaired (e.g., totally blind or functionally blind) users, the information can be provided in

the form of image data that is converted to electrical signals and delivered to a visual

prosthesis. Information can also be provided in the form of other signals, including haptic

signals (e.g., vibrations, movements, and other tactile signals) and auditory signals. For some

prostheses, the information can include visual or nonvisual information (e.g., infrared

images) provided through a head-mounted display (HMD). Visual prostheses using an

additional camera system can use the featured systems.

The processing techniques described herein apply image processing techniques or

depth camera system to suggest and select image information corresponding to in-plane

objects (e.g., objects at selected distances or within particular focal planes relative to the

user's position) from out-of-plane objects to effectively stabilize the object at the center of

view and actively moving background clutter in the other planes. The image information

provided to the user therefore represents the in-plane objects largely stable while moving the

others, and is presented in a compressed (e.g., reduced resolution and reduced dynamic

range) format suitable for retinal implants or other visual prostheses, including sensory

substitution devices.

First, the user can select the image information to be displayed to the user by scanning

and traversing through images in different depth, selecting a depth plane from among

multiple proposed depth planes that includes a potential 01, and then moving the user's head

or a detector of the system according to instructions from the system (e.g., that request the

user to move their head laterally or move a detector of the system laterally to bring the 0 1to

the center of the system's visual field). Meanwhile, the proposed stabilization system can

mimic natural eye movement and thus can provide visual cues to separate the 0 1from the

moving background. In particular, the 0 1 can be stabilized at the center of visual field or

other reference point on the visual field while the background moves relative to the center or



the reference point. A conventional head-mounted camera of the visual prostheses may not

be able to lock the 0 1at the center of the view or the reference point, and the user's head

movement may easily move the 0 1out of the visual field. In contrast, with the proposed

system, the movement of the user's head with the proposed stabilization system takes

advantage of motion parallax to provide reliable de-cluttering visual cues (e.g., by stabilizing

the 0 1such that the 0 1 is static in front of moving background clutter) for rendering images

for prosthetic vision with a cluttered background and thus improve object recognition.

Imaging Systems

FIG. 1 is a schematic diagram showing an embodiment of an imaging system 100 for

providing depth information about a user's environment to a user. An example of such an

imaging system is described in International Application Number PCT/US2015/021543, the

entire contents of which are incorporated herein by reference. A confocal imaging system is

one example of a depth imaging system that could provide depth information about the user's

environment to the user. In other embodiments, rather than being a confocal imaging system,

the imaging system 100 of FIG. 1 could include another type of depth imaging system, such

as, for example, a stereo camera, an IR depth camera (e.g., a time of flight camera or a

structured light camera), a light-field camera for depth maps, a multiple camera array, or

another appropriate depth imaging system.

The imaging system 100 includes a depth detector 102 coupled to a control unit 104.

The control unit 104 includes an electronic processor 106 and, optionally, a signal transmitter

108 coupled to the processor 106. Also included in the imaging system 100 are an optional

input interface 110 and an optional output device 112, both of which are coupled to the

electronic processor 106.

In general, the detector 102 is configured to obtain depth information, e.g., indicative

of a depth relative to the user, about the environment 150 of a user 152 of the imaging system

100. In general, the depth information corresponds to objects' distance information from a

position of the user 152 within the environment 150 or from a position of the detector 102

within the environment 150. As shown schematically in FIG. 1, the depth information

corresponds to information obtained at one or more different depth planes 156a and 156b

positioned along axis 154, which extends in a direction outward from the user 152.

In general, in this embodiment, the imaging system 100 corresponds to an imaging

system using any depth cameras as described herein. Conventional confocal imaging systems

acquire depth planes that each correspond to a relatively shallow depth resolution, while



contributions from objects located outside the depth resolution range are suppressed entirely.

In some embodiments, the depth information acquired by the imaging system 100 can include

a set of confocal images of the environment 150 acquired by, for example, a light-field

camera or IR-based depth camera (structured light or time-of-flight camera). Each of the

depth planes captured by the depth camera can correspond to a different distance along axis

154 relative to the user 152.

In certain embodiments, the imaging system 100 can obtain depth information

corresponding to different distances from the user 152 in a single depth image frame. To

obtain the depth information in this manner, the imaging system 100 can include a two-

dimensional array 114 of lenses (light-field camera), depth sensors (IR-based depth camera),

or cameras (multiple camera array) 116, as shown in FIG. 1. Because the detector 102 is

generally worn or carried by the user 152, depth planes, e.g., 156a and 156b, in front of the

user are also located at different distances along axis 154 relative to the position of the user

152.

The imaging system 100 can also include a variety of other imaging components. For

example, the imaging system 100 can include one or more lenses, stops, filters, beam

splitters, diffractive elements, apertures, spatial modulators, and mirrors. While the imaging

system 100 has been described as directing and re-directing light, in other embodiments, the

imaging system 100 can emit other radiation or signals that can interact with the environment

and detect features of the environment. For example, the imaging system 100 can emit

radiofrequency waves, ultrasonic waves, infrared light, or other waveforms. The imaging

system 100 can also have magnifying or minifying optics (lens set) in front of the array 114

to enlarge or shrink the images formed by the imaging system 100.

As shown in FIG. 1, the imaging system 100 can optionally include a signal

transmitter 108 coupled to the electronic processor 106. In some embodiments, the signal

transmitter 108 is configured to transmit electrical signals (wirelessly or through conductors)

to a visual prosthesis 160 worn by the user 152 of the system 100. The prosthesis 160 can

have included motion sensors 162 mounted to the prosthesis and worn by the user 152. In

general, the imaging system 100 can be used with a wide variety of different types of visual

prostheses, and the signal transmitter 108 can be configured to deliver electrical signals that

are compatible with each such prosthesis. As one example, the signal transmitter 108 can

transmit signals that are compatible with retinal implants positioned within an eye of the user.

During operation of the imaging system 100, the electronic processor 106 generates

one or more images for transmission to the visual prosthesis 160. The images are then



converted by the processor 106 and/or the signal transmitter 108 into electrical signals

suitable for the prosthesis, and transmitted by the signal transmitter 108 to the prosthesis.

Where the imaging system 100 does not include the transmitter 108, images can be converted

into electrical signals by the processor 106, which then transmits the signals directly to the

prosthesis.

The imaging system 100 can optionally include an input interface 110 . The input

interface 110 allows the user to transmit information and instructions to the imaging system

100, which are then used to adjust the operating parameters of the imaging system 100. A

variety of different interfaces can be used, including tactile interfaces (e.g., touch-sensitive

interfaces, buttons, switches, and knobs) and voice-activated interfaces (e.g., a microphone

for receiving auditory instructions from the user). The imaging system 100 can include

wireless control (e.g., Bluetooth or WiFi) to allow the user to control the imaging system 100

without the use of a direct wired connection. To allow the user to direct the imaging system

100 to particular objects within the user's environment, the input interface 110 can include

sensors such as gyroscopes, accelerometers, touch pads, and knobs that allow the user to

select objects through gesture-based movements such as nodding of the head and hand

motions.

The input interface 110 can be mounted in a variety of ways to permit the user to

conveniently and accurately deliver information and instructions to the imaging system 100.

In some embodiments, for example, the input interface 110 can be integrated into the handle

of a long cane typically carried by the blind user, allowing the user to deliver instructions to

the system with relatively slight, unobtrusive hand and/or finger movements. In some

embodiments, the input interface 110 can be integrated into one or more articles of clothing

or jewelry (e.g., a ring, bracelet, glove, necklace, pin, pendant, or eyeglass frames).

The imaging system 100 can also optionally include an output device 112. The output

device 112 is generally configured to convey information to the user in the form of warning

or alerting signals that draw the user's attention to objects in the user's environment. Such

signals can be delivered to the user via the output device 112 when, for example, an object

closely approaches the user, or when an object is detected. A variety of different signals can

be provided to the user, including for example tactile signals and auditory signals.

Accordingly, the output device 112 can be implemented in variety of ways depending upon

the nature of the signals to be delivered. In some embodiments, output device 112 can

include a vibrating annunciator or another device configured to deliver tactile signals to the

user. In certain embodiments, the output device 112 can include a speaker or other sound



generating device for delivering auditory signals to the user. For example, bone conducting

speakers are well suited for such applications, as they leave the natural hearing of a vision-

impaired user unimpeded.

Implementation of Motion Parallax

In normal vision, motion parallax, as a monocular cue, is used to separate signals

from different depths according to different amount of movement induced by change of

viewpoint. FIG. 2A shows an example in which two objects (e.g., potential OIs), a circle and

triangle, are located at different distances from the viewer who gazes straight ahead (towards

infinity). The circle represents an object relatively close to the viewer, while the triangle

represents an objective relatively distant to the viewer. The viewer gazes along the viewing

direction represented by a principal ray 302A when the viewer is at position A, and gazes

along a viewing direction represented by a principal ray 302B when the viewer moves to

position B (neglecting binocular vision for simplicity). Since the viewer is gazing straight

ahead toward infinity, both objects are not OIs, but clutter. Referring also to FIG. 2B, when

moving from position A to position B, the viewer sees the triangle moving from right to left.

The viewer also sees the circle move from right to left but by a larger distance than the

triangle, since the circle is closer to the viewer than the triangle along both principal rays

302A, 302B. This difference in apparent movement, or motion parallax, is the same effect

that causes car passengers to perceive distant objects as moving past more slowly than closer

objects and serves as a powerful depth cue in normal vision.

In contrast to the views shown in FIGS. 2A and 2B of distance viewing, when the

viewer is observing an OI that is typically closer to the viewer, the viewer generally moves

their head (and/or their body) with eye rotation to place the OI (e.g., the circle in FIG. 2C)

along their principal ray to better distinguish the OI from the environment (e.g., the triangle

in FIG. 2C). Referring to FIG. 2C, rather than gazing into the far distance or toward infinity,

the viewer looks at the circle (the OI) with eye rotation along the principal ray 304A when at

position A . When the viewer moves to position B, the viewer keeps their gaze on the OI

(circle) along principal ray 304B, keeping the OI in their central field of view while other

clutter (triangle) is moving. This rotation of the eye with head translation leads to a stable

presentation of the circle at the center of both images, as shown in FIG. 2D, while the farther

triangle appears to move across the viewer's view.

This viewing strategy in normal vision is useful as the viewer maintains visual contact

with the OI and takes advantage of motion parallax to distinguish the OI from clutter existing



in other depth planes (e.g., the plane of the triangle). Although the differential movement

between the triangle and circle objects is not changed between FIG. 2B and FIG. 2D, it is

much easier to separate the centered circle 0 1 in FIG. 2D from the background clutter

because the clutter is moving but not the circle 01.

Methods of Use

The imaging system 100 uses a guided-cropping system to optimize motion parallax

cues by stabilizing the 0 1 at the center of view and moving background clutter for object

recognition in a visual prosthesis. In some implementations, the imaging system 100 can be

incorporated as a selective mode in a visual prosthetic device 160 for recognizing objects in

the environment 150 around the user 152. This functionality keeps users informed by giving

them options to activate the capability and actively select a particular depth or 01. The

system can be described in three modules: Module I, which generates images used to identify

0 1 and the depth planes at which those objects are located relative to the user; Module II,

which directs the user to place a selected 0 1 in the center of the field of view (FoV) of the

detector 106; and Module III, which directs the user's head movements to enable

compensatory cropping to stabilize on the selected 0 1 and present it more clearly for

inspection by the user.

FIG. 3 shows a flowchart 400 that includes a series of steps that the imaging system

100 uses to deliver information about a user's environment 150 to the user 152 once the

system is activated. In the first step 402, the processor 106 identifies and suggests a pool of

depth planes to the user 152 that have potential OIs based on the images received on the

detector 102 as described above. Next, in step 404, the user selects one depth of interest from

the pool of depth planes, e.g., one depth plane selected from a pool of five OI/depths. The

user 152 can manually select one or more focal planes corresponding to different distances by

activating controls on the input interface 110 (e.g., touch pad, slide bar, knob controller, etc.),

and/or by issuing a speech command that is detected by the input interface 110 and

recognized by processor 106. In some instances, the system can inform the user 152 via the

output device 112 how many OIs are available, and which 0 1 is being considered at any

given time. In some examples, these different OIs can be examined one at a time, starting

with the closest object.

The processor 106 then determines, at step 406, if the 0 1 contained in the selected

depth plane is located in the center of the FoV of the detector 106. If the 0 1 is not centered,,

at step 408, the processor 106 executes the system module that directs the user 152 to rotate



his head to center the 0 1in the FoV. If the 0 1 is centered at step 406, or once the 0 1 is

centered after step 408, at step 410, the processor 106 then executes the system module to

lock the 0 1at the center of view even with the user's head movement to enable parallax-

driven compensatory cropping and presentation of the 0 1with the moving background clutter

following head movement at step 410. While described as being centered in steps 406 and

408 and in other certain implementations herein, in other implementations, the 0 1 is not

centered but rather is positioned proximate another reference points besides a center of the

FoV. For example, the reference point can correspond to a center of a quadrant of the FoV, a

predefined point on the FoV, or other appropriate reference point.

Module I: Identification and Suggestion of Depth Planes of Interest

Module I includes steps 402 and 404 of FIG. 3, and requires that the imaging system

100 capture the depth information of the environment 150 in front of the user 152. In some

implementations, depths can be determined by using a depth camera such as a structured light

camera (e.g., Kinect, Microsoft, Redmond, WA), a time-of-flight camera, a light field

camera, a stereo camera, or a multiple camera array on a head-mounted video camera system.

In some embodiments, this depth information can be calculated by tracking the user's

head movement and recording corresponding video image movement with the aid of the

motion sensors 162 (accelerometer and gravity sensor) attached to a head-mounted video

camera system. When the user 152 triggers the function, the imaging system 100 provides

the user with an instruction to make a lateral head shift (or left-and-right motion). During the

head shift, the imaging system 100 captures different views while measuring head translation

by the sensors. The amount of feature shift is acquired using feature matching methods (e.g.,

optical flow, SIFT or scale-invariant feature transform, etc.) that compare multiple

viewpoints captured during the user's head translation (include stereo matching). The depth

map is then calculated by triangulation.

After obtaining the depth information using one of above-mentioned or another

method known in the art, the imaging system 100 identifies the pool of depth planes that have

potential OIs in step 402. As one example, the imaging system 100 can divide an image at a

particular depth plane into multiple sections (depth resolution) and calculate the density of

pixels in each section. After normalizing the number of pixel in each section by the image

resolution, a histogram of number of pixel in each section with potential peaks is determined.

The section that has the highest pixel density may be a potential location of the 01. Other

possible methods that can suggest the potential depth planes for objects of interest using the



depth information can be applied in this system. Once detected, the user 152 can choose

among the identified planes of interest for closer observation, and the processor 106 can

proceed to step 406 in FIG. 3 and then to Module II to guide the user to center the OI in the

FoV at step 408 if necessary.

Module II: Guided Head Rotation

An optimal performance requires that the user 152 start from a position with the OI at

the center of the detector's FoV. Thus, given the depth plane and related OI selected at step

404, the processor 106 then decides whether the OI in that depth plane is located near the

center of the FoV, step 406, and guides the user 152 to step 408 if it is not. The user 152 first

adjusts his head rotation and follows with body rotation to align his body with the direction of

the object so that the lateral head movement is in a direction orthogonal to a line connecting

the initial head position and the OI.

FIG. 4 shows the details of step 408, implementation of system Module II, which

directs the user 152 to rotate his or her head to center the OI in the detector FoV. At step 502

the processor 106 loads the detector 106 image corresponding to the selected depth and has

identified the location of the OI as part of the user selection step 404 in FIG. 3 . The

processor 106 checks if the selected OI is near the center of the FoV at step 504 (equivalent

to step 406 in FIG. 3). If the object is centered, the processor 106 at step 510 moves the

object identification to Module III for the compensatory cropping.

Frequently, at step 504 the OI is not centered in the image, as illustrated in FIG. 5A.

The system therefore moves to step 506 and calculates the offset of the OI from the center of

the image. The system then guides the user to rotate his head to aim at the OI and place it

along the principal ray of the detector 106, as shown in FIG. 5B.

There are multiple ways to give a user 152 feedback for head rotation toward the OI

via the output device 112, such as visual, auditory, haptic, or a combination. For example,

flashing electrodes on the left or right side in the visual prosthesis image can guide the

direction of head rotation, or vibrational or electrical feedback contacts in left and right hands

or arms can provide guidance. An audio cue could present as a sound from the left indicating

a left rotation, a sound from the right indicating a right rotation, and the magnitude

corresponding to the required rotation amount. In some implementations, the flashing (or

vibration or electrical or other feedback) can change in frequency and/or intensity as the

center of the FoV moves closer to the OI. For example, the flashing can get slower or faster

the closer or further the OI is from the prosthetic image center.



As the user 152 rotates (e.g., both head and body) in response to the feedback, the 0 1

location is constantly measured and updated (cycling through steps 502, 504, 506, and 508 in

FIG. 4) and the guiding feedback stops when the OI is near the detector FoV center, as shown

in FIG. 5B. In some implementations, an additional signal (e.g., cessation of flashing, or a

unique vibration, or sound cue) can confirm to the user 152 that the OI is now in the center of

the FoV.

Once the OI is centered in the detector FoV, at step 510 the user (now facing the OI)

is instructed to utilize a natural lateral head movement to explore the OI, which is centered

during the head movement by using image cropping, or move to Module III.

Module III: Image Cropping with Head Translation

For the background decluttering by motion parallax using head movements, the

system 100 should track and dynamically crop around the OI to maintain it at the center of

the prosthetic VF during the head translation. This is of particular advantage in prosthetic

vision where the VF of the prosthesis 160 is generally extremely limited compared to the

FoV of the detector 106. A typical visual prosthetic VF is around 20°, while the detector

FoV can be as wide as 50° to 80°. For example, in FIG. 7A the camera FoV is 47° and the

prosthetic VF is 27° indicated by the box).

Two methods to calculate the area for the cropping are described: image cropping

calculated according to information acquired through head tracking sensors and acquiring the

area to crop based on feature matching.

Head TrackingSensors

With the OI centered in the detector FoV, the user is then instructed laterally move his

head (or his head and body together) in a motion such as shown in FIG. 7B (similar to as in

FIG. 2A). As the user moves laterally back and forth, the OI will be visible in camera FoV

within an angle Θ in the images, shown in FIG. 7C.

To calculate this angle, the distance to the OI and the distance the head moves are

measured in real-time. Referring to FIG. 7D, the distance to the OI, a, is selected before

module II and adjusted after the completion of module II, i.e., when the OI is located in the

center of the FoV. The amount of head translation from the initial position, d, is tracked

using the built-in motion tracking sensors 162 (acceleration and gravity sensors, etc.) after the

initiation of stabilization methods described herein. Given the OI distance, a, and the lateral

head shift, d, the rotation angle of the principle ray for cropping is tan _1(d/a) to keep the OI at



the center of prosthetic VF. Since the method to extract the depth map using the head

translation in module I also uses the head tracking sensors, this method is efficient for such a

system. This method also can be implemented by any sort of depth camera system.

The method used is shown in FIG. 6 . In step 510 shown in FIG. 4, the OI has been

detected at the center of the camera FoV and the system 100 moves to the first step of module

III, where the processor 106 receives the amount of head translation from its initial position,

d, and the distance to the OI, a, based on the planar distance chosen by the user (steps 802

and 804). The processor 106 then calculates the cropping rotation angle Θ using the equation

above and crops the image so that the OI is centered in the prosthetic VF, at step 808. In

some implementations, the processor 106 will crop the angle Θ plus or minus a small

additional angle. The processor 106 then confirms that the OI is positioned at or near the

center of the cropped image at step 810. If not, the system returns to steps 802 and 804 to try

again. If yes, the processor 106 determines that the image has been successfully cropped

with a centered OI. Next, at step 812, signals can be transmitted to the visual prosthesis 160

worn by the user or embedded within the user's eye. The representative images generated in

step 808 can be converted to electrical signals that are compatible with retinal implants or

other types of visual prostheses, and the electrical signals can be delivered to the prosthesis

160 (e.g., via signal transmitter 108). Similar signals can also be delivered to other sensory

organs serving the prosthesis such as the skin and/or the tongue, for example. The visual

prosthesis can have electrodes configured to provide binary signals or bipolar multi-level

signals (e.g., three levels, four levels, or more).

The advantage of the methods described herein are illustrated in FIGS. 8A - 9E,

which illustrate the differences in object presentation using this stabilization system of the OI

at the center of the VF vs. conventional system. FIG. 8A shows three different side-by-side

head positions a user might take while looking at the circle OI, left, middle, and right, with

the middle position placing the OI along the viewer's principal ray when the viewer is staring

into the distance. As illustrated in FIG. 8C, at this position the OI is at the center of both the

FoV of the image detector (above) and the center of the prosthetic VF (below). However,

with a narrower VF for the visual prosthesis compared to FoV of the detector, a natural head

movement can easily move the OI out of the narrow VF of the prosthesis, either a motion to

the left (FIG. 8B) or to the right (FIG. 8D). An example left to right motion is also depicted

in FIG. 8E, with OI 902 moving from the right edge to the left edge of the prosthetic VF at

positions corresponding to numbers 1-5 in FIG. 8A, making examination of the object

difficult.



A preferable scenario is when the 0 1 is stabilized at the center of the prosthetic VF,

which might be achieved by training head movements with both translations and deliberate

rotations simultaneously. However, to decide the amount of rotation can be difficult without

distinctive inputs. Therefore, the system assists the stabilization of the 0 1 at the center of the

prosthetic VF. FIGS. 9A-9E show simulated prosthetic images using the disclosed methods

to crop the 0 1from the camera images to display the 0 1 at the center of the prosthetic VF,

mimicking this natural head movement with eye rotations for object examination strategy.

FIG. 9A shows three different side-by-side head positions a user might take while looking at

the circle 01, left, middle, and right. The middle position places the 0 1 along the viewer's

principal ray if the viewer is gazing straight ahead.

Although the principal ray of the camera (represented by the dashed lines in FIG. 9A)

does not rotate as does the eye during a viewer's natural head movements (as shown in FIG.

8A), cropping camera images can simulate the effect of eye rotation. Using rotated principal

rays (the dotted lines in FIG. 9A), the 0 1 can be cropped and shown at the center of the

prosthetic VF regardless of the head movement, where a motion of the detector (and/or head

of the user) to the left (FIG. 9B) or to the right (FIG. 9D) allows the 0 1to remain in the

center of the cropped final image, as if the 0 1were in fact on the principal ray (as in FIG.

9C). An example left to right motion is depicted in FIG. 9E using these methods, with 0 1

1002 remaining largely in the center of the cropped image although the FoV of the detector

moves from left to right. The user's head movements with the cropping provides motion

parallax cues similar to the vestibular-ocular reflex in human vision enabling the users to

visually separate the 0 1 (stabilized at the center of the VF) from background clutter (moving

across the VF), and thus assisting object recognition.

In some implementations, once the user has examined the selected 01, the next 0 1 can

then be processed. For example, the system 100 can return to step 404 in FIG. 3, and the user

can select another plane of interest that includes another potential 01, and proceed through

the remaining steps once again. In other implementations, at step 404 the user can select the

same plane of interest selected previously. This could be useful if there are multiple (e.g.,

two or more) potential OIs within the same depth plane. The system 100 could eliminate or

otherwise mark the 0 1as already examined, and proceed to the next 0 1in the same plane.

FeatureMatching

Another method that can be used for cropping is feature matching. The processor

106 first matches distinctive features in the selected 0 1in camera images across multiple



views (e.g., as in FIG. 7B). In this instance, rather than calculating an angle that includes the

01, the 0 1 is directly detected and cropped from the camera images based on its distinctive

features. The cropped image (containing the 0 1and optionally some of the background

surrounding the 01) is presented to show the user 152 in the prosthesis 160. As in this

approach the area for cropping is directly selected from the features in image information,

there is no need to track the head translation, and the system can be simplified by not

including motion sensors 162 but simply the detector 102 or other depth detector.

Hardware and Software Implementations

The systems disclosed herein can serve as a front-end imaging system for any of a

variety of retinal or cortical implants, visual prostheses, and sensory substitution devices

(SSDs), and with minimal adjustment or tuning, substantially improving the user's object

recognition performance. Compared with systems that do not implement the proposed

methods disclosed herein, the systems disclosed herein reduce interpretation times

significantly and at the same time, permit more active exploration of the user's environment.

Typically, the imaging system 100 is worn or carried by the user to enable navigation

within, and interaction with, the user's environment. In some embodiments, the system 100

is configured to be wearable, and is partially or fully integrated into one or more articles of

clothing or other wearable apparatus.

In certain embodiments, the imaging system 100 is implemented as a head-mounted

apparatus such as sunglasses, eyeglass frames, or a hat. In certain embodiments, the control

unit 104 can be worn on another part of the user's body (e.g., at the waist) and is connected to

the detector 102 via a wired or wireless connection. In addition, the system can be added on

accessories such as, for example, a cane, a ring, a bracelet, a necklace, a pin, a pendant,

and/or gloves.

In certain embodiments, the imaging system 100 is implemented as a head-mounted

apparatus. FIG. 10A shows one embodiment of a head-mounted apparatus in which certain

components of system 100 are integrated into a hat 1102 worn by the user. In particular, the

depth sensors (lens array, IR sensor array, camera array, etc.) 114 and the detector 102 are

positioned in a front portion of the hat 1102, while the output device 112 is positioned in a

lateral portion of the hat 1102. In some embodiments, the control unit 104 can be positioned

within the hat 1102 as well, and connected to the detector 102 to provide operating power for

the detector. In certain embodiments, as shown in FIG. 10A, the control unit 104 can be

worn on another part of the user's body (e.g., at the waist) and is connected to the detector



102 via a wired or wireless connection. In addition, the system can be added on accessories

such as, for example, a cane, a ring, a bracelet, a necklace, a pin, a pendant, and/or gloves.

The input interface 110 can be connected directly to the control unit 104 and worn in

a location proximate to the control unit 104 to allow the user to send instructions and issue

commands to the control unit 104. In certain embodiments, the input interface 110 can be

positioned on another article (e.g., integrated into the handle of a long cane) and can be

connected to the control unit 104 via a wired or wireless connection.

In another head-mounted implementation, the depth sensors (lens array, IR sensor

array, etc.) 114, the detector 102, and the output device 112 are integrated into eyeglass frame

as shown in the schematic view of FIG. 10B. The detector 102 and the output device 112 are

connected to the control unit 104 through the eyeglass frames 1104, and the control unit 104

is configured to worn at the waist of the user as described above. The input interface 110 is

integrated into the handle of a cane 1106, and is wirelessly connected to the control unit

104.The detector 102 and the output device 112 are connected to the control unit 104 through

the eyeglass frames, and the control unit 104 is configured to worn at the waist of the user as

described above. The input interface 110 is integrated into the handle of the cane 1106, and

is wirelessly connected to the control unit 104.

The steps described herein can be implemented in computer programs using standard

programming techniques. Such programs are designed to execute on programmable

computers or specifically designed integrated circuits, each including an electronic processor

(e.g., the processor 106), a data storage system (including memory and/or storage elements),

at least one input device, and least one output device, such as an electrode array, display or

tactile array. The program code is applied to input data (e.g., depth information and image

information) to perform the functions described herein and generate output signals and/or

information. Each such computer program can be implemented in a high-level procedural or

object-oriented programming language, or an assembly or machine language. Furthermore,

the language can be a compiled or interpreted language. Each such computer program can be

stored on a tangible, physical computer readable storage medium (e.g., ROM, USB memory)

that when read by a computer or electronic circuit can cause the processor in the computer or

circuit to perform the analysis and control functions described herein.



EXAMPLES

Certain aspects are further described in the following examples, which do not limit the

scope of the claims.

Example 1 - Impact of Guided Cropping Using Motion Parallax on Object Recognition

The present example shows the impact of guided cropping using motion parallax for

background de-cluttering with motion parallax on object recognition.

To understand the capacity of the proposed system better, the system's performance

was simulated using MatLab® under practical scenarios and mostly according to the

parameters achieved by the BrainPort® device (as an example). Referring again to FIG. 7D,

the distance to the OI is "a", the amount of head translation from the initial position is "d",

and the distance from the OI to the background is "c". For the graphs shown in FIGS. 11A

and 1IB, d = 12 cm, camera FoV = 50°, prosthetic VF = 24°. FIG. 11A shows that the

critical distance of c (the minimum distance that the background would shift at least 1 pixel to

see the motion) decreases with an increasing number of pixels N . For a number of pixels N =

20, FIG. 1IB illustrates that critical distance of c increases with distance a . Thus, the higher

number of pixels N, the better the separation, and the closer a, the better the separation, which

allows for optimization of the techniques described herein. The critical distance of c can thus

be controlled and optimized by adjusting the number of pixels N of the prosthetic device

used.

Example 2 - Simulations of Stabilization of OIs

To illustrate the effects provided by the proposed system, an image database was

created that simulated the stabilization of the OI at the center of prosthetic views. Object

recognition was tested in normally sighted subjects using these simulated images.

Image Database with Simulated Stabilization of the OI at the Center of Prosthetic

Views

The BrainPort® V200 (with a prosthetic resolution of 20 x 20 pixels) together with

the proposed system described herein were shown to accurately control the translation and

rotation amount. Images were acquired through the BrainPort® web application that displays

the camera views and simulated 20 x 20 pixels prosthetic views with 256 grey levels.

The grayscale image database includes 35 familiar objects (e.g., a teapot, headphones,

and sneakers) placed in front of synthetic background images at 6 complexity levels and

photographed from 9 lateral viewpoints. Schematic Dead Leaves images mimicking natural



image statistics were used as background images allowing systematic control of complexity.

The objects were placed within arm's reach distances (30 cm, 50 cm, or 70 cm) and the

background images were located 115 cm from the BrainPort® camera. The range of

viewpoints lateral shift was 24 cm, and the 9 viewpoints were 3 cm apart. The rotation angle

at each viewpoint for each object was calculated to maintain the object in the center of

camera FoV. A total of 1890 simulated images were acquired.

Performance of Object Recognition with the Simulated Images

To see the impact of the proposed method, object recognition was tested in normally

sighted subjects using these simulated prosthetic images presented with HMD. The motion

sensors in HMD tracked the subjects' lateral head positions and showed the corresponding

pre-captured images. Six experimental conditions (2x3) were tested: background (with or

without clutter) x object viewing conditions (static single viewpoint, 9 coherent viewpoints

corresponding to subjects' head positions, and 9 randomly presented viewpoints). The object

was centered in all images as simulation of the proposed stabilization of the OI.

As shown in FIG. 12, without background clutter, average recognition rate was about

45% for all viewing conditions. Performance with clutter dropped to 14% in the static

condition, but was significantly improved in both motion parallax conditions: 26% for

coherent viewpoints and 24% for random viewpoints. The motion parallax cues from the

stabilization of the OI at the center of prosthetic VF improved object recognition in a

cluttered environment, and the improvement did not require coherent viewpoints.

OTHER EMBODIMENTS

A number of embodiments have been described. Nevertheless, it will be understood

that various modifications may be made without departing from the spirit and scope of the

disclosure. For example, the imaging system 100 described herein is particularly well suited

to provide information to a vision-impaired user; however, the imaging system 100 also can

be used to provide information in a variety of applications where a reduced-resolution

representation of the user's environment is useful, e.g., when the "user" is a robot or

autonomous air-borne or water-borne drone, or surveillance system, in an auto-tracking

system. These applications include environments with low-lighting and poor visual

conditions (e.g., total darkness, dense fog, underwater, or smoke conditions). Although a

single camera has been described, the lateral head motion described in this disclosure can be

replaced with a series of cameras that are positioned in a lateral sequence or moving camera



on the rail system. Rather than requiring the user to move their head back and forth (as

described for Module III) the system 100 can use the known, fixed distance between cameras

to provide distance d . Accordingly, other embodiments are within the scope of the following

claims.



WHAT IS CLAIMED IS:

1. A system for providing information about an environment to a user within the

environment, the system comprising:

a detection apparatus configured to obtain depth and image information about the

environment, wherein the depth and image information comprises data relating to potential

objects of interest at multiple distances relative to a position of the user within the

environment; and

an electronic processor in communication with the detection apparatus, wherein the

electronic processor is configured to:

obtain, from the depth and image information, a set of one or more depth

planes containing the potential objects of interest;

receive input comprising a user selection of an object of interest from among

the potential objects of interest;

provide output to guide the user to move the detection apparatus to position

the object of interest near a reference point on a field of view of the detection

apparatus;

obtain multiple images of the object of interest during the user's movement of

the detection apparatus; and

crop each of the images to keep the obj ect of interest near a reference point on

each of the images.

2 . The system of claim 1, further comprising motion sensors.

3 . The system of claim 2, wherein the motion sensors are configured to measure

motions and displacements of the detection apparatus.

4 . The system of claim 2, wherein the motion sensors are configured to measure

an initial position of a head of the user when the user selects the object of interest.

5 . The system of claim 4, wherein:

the electronic processor is configured to provide output to guide a lateral shift of a

head of the user to adjust a position of the field of view, and



the motion sensors are configured to measure a distance of the lateral shift relative to

the initial position of the head.

6 . The system of any one of claims 1 to 5, wherein the electronic processor is

configured to adjust a position of the field of view by a distance substantially matching a

distance of a lateral shift of a head of the user.

7 . The system of claim 6, wherein the electronic processor is configured to

calculate:

a principal rotation angle of a principal ray for the object of interest from the head

after the lateral shift, and

a distance of the object of interest from the detection apparatus.

8 . The system of claim 7, wherein the electronic processor is configured to crop

each of the images based on the principal rotation angle and present each resulting cropped

image to the user.

9 . The system of any one of claims 1 to 8, wherein the electronic processor is

configured to identify portions of the images that correspond to the object of interest by

identifying a feature of the object of interest, and

cropping each of the images such that the object of interest is near the center of the

each of the images.

10. The system of claim 9, wherein the electronic processor is configured to

present each resulting cropped image to the user.

11. The system of any one of claims 1 to 10, wherein the detection apparatus

comprises a depth camera system comprising one or more of a light-field camera, stereo

camera, IR-based depth camera, or a multiple camera array.

12. The system of any one of claims 1 to 11, wherein the depth and image

information comprises a set of depth sliced images each corresponding to a depth plane at a

different distance relative to the position of the user.



13. The system of claim 12, wherein the depth sliced images comprise confocal

images.

14. The system of any one of claims 1 to 13, wherein the one or more depth planes

are positioned at one or more distances relative to the position of the user within the

environment, the one or more distances being within a range bounded by a minimum distance

value.

15. The system of any one of claims 1 to 14, wherein the one or more depth planes

are positioned at one or more distances relative to the position of the user within the

environment, the one or more distances being within a range bounded by a maximum

distance value.

16. The system of any one of claims 1 to 15, wherein the electronic processor is

configured to obtain the one or more depth planes by determining an operating mode

associated with the system.

17. The system of any one of claims 1 to 16, wherein the electronic processor is

further configured to convert the images into electrical signals, and to transmit the electrical

signals to a visual prosthesis worn by the user.

18. The system of any one of claims 1 to 17, further comprising an input interface

configured to receive input information from the user and to transmit the input to the

electronic processor based on the input information.

19. The system of claim 18, wherein the input interface comprises a controller

mounted to a cane.

20. The system of claim 18, wherein the input interface comprises a voice-

activated interface.

21. The system of any one of claims 1 to 20, wherein the controller is configured

to track the object of interest in a depth plane.



22. The system of any one of claims 1 to 21, wherein the reference point on the

field of view is a center of the field of view, and the reference point on each of the images is a

center of each of the images.

23. A method of providing information about an environment to a user within the

environment, the method comprising:

obtaining, using a detection apparatus, depth and image information about the

environment, wherein the depth and image information comprises data relating to potential

objects of interest at multiple distances relative to a position of the user within the

environment;

obtaining, from the depth and image information, a set of one or more depth planes

containing the potential objects of interest to the user;

receiving input comprising a user selection of an obj ect of interest from among the

potential objects of interest;

providing output to guide the user to move the detection apparatus to position the

object of interest near a center of a field of view of the detection apparatus;

obtaining multiple images of the object of interest during the user's movement of the

detection apparatus; and

cropping each of the images to keep the object of interest near a center of each of the

images.

24. The method of claim 23, further comprising detecting motions and

displacements of the detection apparatus.

25. The method of claim 23 or claim 24, further comprising:

providing an output to guide a lateral shift of a head of the user to adjust a position of

the field of view; and

measuring a distance of the lateral shift of the head relative to an initial position of the

head.

26. The method of any of claims 23 to 25, further comprising adjusting a position

of the field of view by a distance substantially matching a distance of a lateral shift of a head

of the user.



27. The method of claim 26, further comprising calculating an angle representing

a principal rotation angle of a principal ray for the object of interest from the head after the

lateral shift.

28. The method of claim 27, wherein cropping each of the images comprises

cropping each of the images based on the principal angle of the principal ray, and

presenting each resulting cropped image of the object of interest to the user.

29. The method of any one of claims 23 to 28, further comprising identifying

portions of the images that correspond to the object of interest by

identifying a feature of the object of interest, and

cropping each of the images such that the object of interest is near the center of each

of the images.

30. The method of claim 29, further comprising presenting each resulting cropped

image to the user.

31. The method of any one of claims 23 to 30, further comprising:

converting the images into electrical signals, and

transmitting the electrical signals to a visual prosthesis worn by the user.

32. The method of any one of claims 23 to 31, wherein the reference point on the

field of view is a center of the field of view, and the reference point on each of the images is a

center of each of the images.
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