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ABSTRACT 

For the visual system, luminance contrast is a fundamental property of images, and is one of the main inputs of any 
simulation of visual processing. Many models intended to evaluate visual properties such as image discriminability 
compute perceived contrast by using contrast sensitivity functions derived from studies of human spatial vision. Such use 
is of questionable validity even for such applications (i.e. full-reference image quality metrics), but it is usually 
inappropriate for no-reference image quality measures. In this paper, we outline why the contrast sensitivity functions 
commonly used are not appropriate in such applications, and why weighting suprathreshold contrasts by any sensitivity 
function can be misleading. We propose that rather than weighting image contrasts (or contrast differences) by some 
assumed sensitivity function, it would be more useful for most purposes requiring estimates of perceived contrast or 
quality to develop an estimate of efficiency: how much of an image is making it past the relevant thresholds. 

Keywords: Luminance contrast, contrast sensitivity function, perceived contrast, image quality, no-reference image 
quality, MTFA  

1. CONTRAST 

1.1 Primacy 
For the visual system, luminance contrast is the fundamental carrier of information about images. Motion is perceived 
through temporal changes in luminance contrast; the most initial sensations of depth are formed from binocular 
combinations of monocularly sensed contrasts; chromatic variation is almost always correlated with luminance changes. 
All of these qualities (motion, depth, color) are important parts of normal visual experience, and thus of any full-quality 
representation of it; but a monochromatic, cyclopean still-image is a perfectly acceptable visual representation of a scene. 
Here we argue that in estimating the visual quality of an image, contrast thresholds are of principal importance; 
perceived (suprathreshold) contrast magnitudes although noticeable in side-by-side comparison are relatively less 
important; and that the specific sensitivity functions commonly used in standard practice to estimate perceived contrast 
and quality may be misapplied or inappropriate. 

1.2 Measurement 

Given the primary importance to vision of luminance contrast, it is of great practical and theoretical importance to have 
operational measures of it [1]. The simplest summary measures will usually fail in characterizing the apparent contrast of 
an image, and thus are not used except for the simplest of patterns. Michelson contrast, the absolute range of luminances 
in a pattern, is thus not widely used except for periodic grating patterns – it errs by ignoring too much of an image’s 
spatial variation. A much more common measure of a complex image’s contrast is the standard deviation of luminances 
in an image (RMS contrast), a measure of the average deviation in luminance from the image mean over a specified 
spatial area. This measure is less susceptible to extreme values in an image, and thus tracks better with perceptual 
appearance of image contrast. Still, RMS contrast is a relatively poor predictor of perceived contrast – it errs by equally 
weighting all of the image’s spatial variation and has been shown repeatedly to fail in predicting perceived image 
quality. 

1.3 Perception 

The visual system responds to images through a system of overlapping neural networks, repeated across the visual field, 
which are sensitive to different spatial scales, and perceived contrast is related to the response of these networks. The 
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network responses are not linear, however. The absolute sensitivity of the networks varies along multiple dimensions, 
most importantly spatial frequency (scale), with size and temporal envelope being other important factors [2]. In general, 
finer and finer details require higher and higher contrasts in order for an observer to detect them, until the acuity limit is 
reached and details are too fine to be sensed at any contrast. Extremely coarse details also can require higher contrasts 
for detection, although the exact nature of the behavior at that end of the range is less clear. This pattern of varying 
absolute sensitivity to contrast is called the contrast sensitivity function (CSF). 

Once contrasts are detected, their perceived strength follows a compressive function of stimulus contrast [3,4]: as 
stimulus contrast is increased, the corresponding increase in perceived contrast lags. The compressive relationship 
between stimulus and perceived contrast has the result that at high physical contrasts, perceived contrasts of patterns at 
different spatial frequencies converge to a similar level, despite starting from very different thresholds, an effect known 
as ‘contrast constancy’ [5]. 

1.4 Quality 

Because of this differential sensitivity to different spatial frequencies, most operational measures intended to replicate 
human perception of contrast involve a combination of the CSF with the input image contrast spatial frequency 
spectrum. For a given display method if the general form of a typical image’s amplitude spectrum is known, and if the 
device’s MTF is known, then an overall quantity of image contrast transmitted by the device to the observer can be 
computed. If the observer’s CSF is also known, a combined quantity (e.g. the MTFA, the area between the image 
spectrum modulated by the display MTF from above, and the threshold function from below [6]), or something closely 
related (many VQ measures take a similar but more complex approach [7,8,9,10], including thresholds and other 
psychophysical nonlinearities based on human vision), is often taken to be indicative of the perceived quality of a 
displayed image, or of its discriminability versus an ideal reference. In the following sections, we detail why this may be 
a misguided notion at least in part, and particularly for non-reference quality measures. 
 

2. THRESHOLD 

2.1 Thresholds Matter 

For vision the most important thing is that signals are sensed and available to the rest of the brain. Sensation of contrast 
in this context must be taken to include its phase (e.g. polarity) or position. Whether one signal is more or less 
represented than another is relatively less important. The strength of the representation is often due to interfering factors 
– fog, darkness, optical blur, and other factors all can contribute to weakly represented signals. The compression of 
suprathreshold contrast perception speaks to the diminishing returns for representation of stimulus magnitude. We 
therefore argue here that what matters most for visual perception is not the strength of a signal, but whether or not it is 
detected. This means that an integration of sensed signal magnitude cannot be a very meaningful measure of image 
quality. What matters to visual quality is not the amount of contrast which has exceeded the system’s instantaneous 
established thresholds; rather, what matters is the quantity of thresholds that have been exceeded. So, if contrast is 
expected in some region of an image at some scale, but is not seen, perceived quality suffers. If this is correct, then the 
remaining question is: what thresholds are to be used in making such an analysis? 

2.2 Thresholds are Elastic 

Studies of contrast adaptation show that adaptation results in an adjustment of the detection threshold, so that it is 
dynamically set near the adapting contrast [11,12,13]. Experiments measuring contrast sensitivity against complex 
(broadband) image backgrounds, or immediately after adaptation to such backgrounds, show that the perceptual 
representation of a complex image is relatively flat and near-threshold, with significant suppression of perceived 
suprathreshold contrast observed especially towards lower spatial frequencies [14,15]. That is, although there may be a 
large difference between thresholds and typical image contrasts at the peak of the CSF, it is not true that there is a 
correspondingly large perceptual effect of this difference – i.e. high contrasts are never very far above the corresponding 
detection thresholds. The ‘true’ thresholds tend to be much closer to the image contrasts, so the actual perceptual effect 
must be correspondingly smaller. 
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2.4 What reduces quality? 

According to what has been put forward so far, it could be suggested that it is better to sense more details weakly than to 
sense fewer details strongly. Once details are detected, the visual system adapts to current conditions, amplifies weak 
signals, and construct a normal representation of what is being sensed [16]; but once details fall below the threshold, 
there is nothing to amplify, and the result is a degraded, poor representation. Refer to the images in Figures 1 and 3 for 
an illustration of this concept. Figure 1’s image has had its contrast attenuated by 75% at spatial frequencies above 32 
cycles per picture (cpp; about 2 cycles per degree of viewing angle, cpd, from a 45 cm viewing distance on a standard 
printed page), but only if the original contrasts exceeded a threshold value of 0.15 (which was arbitrarily chosen to 
produce a clear demonstration), and in such a way as to keep all manipulated contrasts above the specified threshold, as 
described in Equation 1: 
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Here c represents contrast at a particular spatial position x and frequency f, δ is the contrast decrement equal to 0.25, and 
t is the threshold (which obtains the sign of the corresponding contrast). Despite the considerable distortion of contrast in 
this image (dotted colored lines in Figure 2) it is not immediately obvious that there is anything wrong with it. 

Figure 3’s image has been decremented at the same frequencies, but only at ‘low’ contrasts: i.e., whereas in Figure 1 
contrasts above 0.15 were compressed towards that contrast level, in Figure 3 only contrasts below 0.15 have been 
compressed towards the local mean luminance, as described in Equation 2: 
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Figure 2. Contrast distributions in the bands of Figures 1 and 3. Original distributions are the smooth black lines. 
Dotted colored lines represent the contrast histograms for Figure 1. The ‘threshold’ was set at 0.15, so contrasts 
above this level were compressed towards the threshold level. Solid colored lines represent the histograms for 
Figure 3. Here contrasts above 0.15 remained unchanged, but lower contrasts were shifted downwards. The dashed 
black line is a ‘standard observer’ CSF [21]. The dashed red line represents a hypothetical adapted CSF, to 
illustrate why lowering the low contrasts in Figure 3 has such a drastic effect: the contrasts are lowered below 
some higher-than-standard CSF. 

 

SPIE-IS&T/ Vol. 8292  82920E-4



Figure 3 loo
affected band
less than 10%
have been pu
Figure 3, as 
have confirm
recovered ev
out in Figure
in 2.2 and 2.3
contrast distr

Figu
cont

It is interestin
the contrasts 
observer with
expect a ‘com
contrasts at th
the image to
usually will n
effect of incr

oks much more
ds, Figure 1’s R
%. The importa
ushed below th
shown in Figu

med that most 
ven following 8
e 2 (dashed blac
3, the true thre
ributions (dash

ure 3. Similar to
trast loss in this i

ng to note the 
 in the origina
h better-than-n
mplete’ contra
his frequency d

o look sharpen
not look blurre
reasing very-hi

e degraded tha
RMS contrast h
ant difference i
he threshold of 
ure 2, are still 
– though not a

8-bit quantizati
ck curve), almo
sholds should 
ed red line in F

o Figure 1, exce
image is much le

situation at the
al image fall b
normal visual a
ast distribution 
does not contri

ned or enhance
ed, even thoug
gh-frequency c

an Figure 1, d
has been decre
is that the lowe

f visibility (or q
higher than th

all – of the de
ion of the imag
ost everything 
actually be mu
Figure 2). 

ept that only co
ess than in Fig.1

e highest frequ
elow the ‘abso
acuity cannot p
at the highest

ibute to any ob
ed. This effect
h most of its h
contrasts can th

despite the fact
eased by about 
ered contrasts 
quantized out o
he expected gr
etail in the app
ge). It is import

in Figure 3 wo
uch higher, perh

ontrasts below th
, but the degrada

uency band. Ne
olute’ threshol
possibly detec
t frequencies w
bvious degradat
t is interesting
highest frequen
herefore be une

t that Figure 3
30%, while Fi
in Figure 1 are

of existence; th
rayscale resolu
parently smoot
tant to note tha
ould still be ab
haps even hugg

he set threshold
ation is far more

ear 32cpd, clos
d marked out 
t everything. T

where it mainta
tion of the ima
 in itself, beca

ncy contrasts m
expected and s

3 has lost muc
igure 3’s contr
e still visible, w
his is unlikely 
ution of the im
th (blurred) are
at if the CSF w
ove threshold. 
ging the lower

d have been dec
e severe. 

se to the huma
by the standar

The visual syst
ains sensitivity
age, yet increas
ause a high re

must be subthre
surprising.  

ch less contras
rast has been d
while those in 
since most con

mages as displa
eas of Figure 3

were where it is
However, as i

r bound of the e

 
cremented. The 

an acuity limit,
rd CSF. Here, 
tem therefore 

y. In fact, remo
sing contrast w
esolution digita
eshold. The sha

st. In the 
ecreased 
Figure 3 

ntrasts in 
ayed. We 
3 can be 
s marked 
indicated 
expected 

, most of 
even an 

does not 
oving all 

will cause 
al image 
arpening 

SPIE-IS&T/ Vol. 8292  82920E-5



2.5 Not even perceived contrast magnitude is a sum over the CSF 

In another recent study we have shown that a blank-adapted CSF cannot predict human judgments of image contrast [18] 
independent of perceived image quality. Subjects decided which of two copies of an image, whose amplitude spectra had 
been randomly jittered, had higher contrast. Over several thousand such trials, using different images, subjects’ choices 
were correlated with the jittered contrast values at different spatial frequencies, revealing a band-pass weighting 
function. Simulations demonstrated that a perceived contrast model which weights image contrast using a standard CSF 
(and nonlinear transducer functions; similar to the steps involved in many current quality metrics) yielded low-pass 
weighting functions unlike human performance. For the simulated observer to succeed in judging image contrast, gain 
control weights, stronger towards low spatial frequencies, must be included as predicted by the sensitivity experiments 
[14,15]. The result of incorporating such gain control is similar to what is described in the preceding sections: local (in 
space and scale) responses to image contrast tend to be small and just above the adjusted threshold. 

 

3. CONCLUSIONS 
The CSF is misused – so what? 

What is missing at this time is psychophysical data on ‘threshold capacity’, i.e. how much structure is needed at a given 
scale to fulfill the visual system’s expectations and how these expectations interact across scales.  Since natural images 
with varying radially averaged spectrum slopes are all perceived to be in focus and clear [16], it is likely that the 
system’s expectation at a given scale are affected by the contrasts seen at other scales (the slope of the amplitude 
spectrum) and their interactions. 

We must, at last, address several more peripheral points. First, a caveat: all of these arguments are regarding how to 
interpret transmission of contrast at different scales, and the impact of such transmission on measures of image quality, 
but we have made our argument in the context of amplitude, not phase information. Attenuation of contrast as described 
above is decrease in amplitude, while optical blur and compression artifacts, two important factors affecting image 
quality, involve changes in the local spatial structure of an image beyond changes in amplitude. It is not clear whether 
our argument can be expanded to include, for example, a probabilistic approach to quantifying phase distortion in an 
image. Second, we have restricted our discussion entirely to static images, but this is not a problem: the contrast 
adaptation which affects thresholds in the manner we have described, putting much application of CSFs into question, 
operates rapidly [19]; even as a scene changes from second to second, the visual system is adapting, although there must 
be a temporal averaging of adaptive states over time; so, when viewing a dynamic scene such as a video, the situation 
(i.e. where the contrasts are, and where the thresholds are) is certainly not as clear-cut as illustrated in Figure 2, though 
the same principles should apply. 

All of this can be taken together to make the claim that a summation of (suprathreshold) contrast magnitudes over the 
entire range of the CSF is not necessarily indicative of perceived quality or even contrast of an image. It must be 
important that contrasts within range of the CSF are sensed, but not how far above the marked thresholds they are; since 
most contrasts in an image will be above threshold, they will contribute redundantly to a summary measure using the 
baseline CSF. In fact, reducing contrast at mid-range spatial frequencies can yield computational benefits, for example 
freeing up dynamic range for application of high-frequency contrast enhancement [20] or simply by decreasing the 
required bit depth needed for smooth representation of spatial structure. 

We close by proposing that a probabilistic measure – i.e. given the distribution of contrasts that have been sensed, what 
is the likelihood that an expected proportion has been sensed - would be an especially useful and meaningful measure of 
image quality. Such a measure would, in effect, specialize in sensing ‘contrast gaps’ or ‘cliffs’ (usually at higher retinal 
spatial frequencies) that indicate to the visual system that the image is degraded. This would be a more theoretically 
appealing, accurate, and even intuitive way of estimating the perceptual efficiency of a displayed image and its 
unreferenced quality. 

4. ACKNOWLEDGEMENTS 
Supported in part by NIH grant # EY05957 and a gift from Analog Devices Inc. 

SPIE-IS&T/ Vol. 8292  82920E-6



REFERENCES 

1. Peli, E., “Contrast in complex images,” JOSA-A 7(10), 2032-2040 (1991). 
2. Peli, E., “Contrast sensitivity to patch stimuli: effects of spatial bandwidth and temporal presentation,” Spatial 

Vision 7(1), 1-14 (1993). 
3. Cannon, M.W., Fullenkamp, S.C., “A transducer model for contrast perception,” Vision Research 31(6) 983-

998 (1991). 
4. Legge, G.E., “A Power Law for Contrast Discrimination,” Vision Research 21(4) 457-476 (1981).  
5. Georgeson, M.A., & Sullivan, G.D., “Contrast constancy: deblurring in human vision by spatial frequency 

channels,” Journal of Physiology 252, 627-656 (1975). 
6. Barten, P.G.J., “Evaluation of subjective image quality with the square-root integral method,” JOSA-A 7(10), 

2024 (1990). 
7. Daly, S., “The Visible Difference Predictor: An Algorithm for the Assessment of Image Fidelity,” in A.B. 

Watson (Ed.), Digital Images and Human Vision, 179-206. The MIT Press, Cambridge MA, 1993. 
8. Lubin, J., “A visual discrimination model for image system design and evaluation,” in E. Peli (Ed.), Visual 

Models for Target Detection and Recognition, 207-220. World Scientific Publishers, Singapore, 1995 
9. Watson, A.B., “DCTune: A technique for visual optimization of DCT quantization matrices for individual 

images,” in Society for Information Display Digest of Technical Papers 24, 946-949 (1993). 
10. Wang, Z., Bovik A.C., “Modern Image Quality Assessment,” Morgan and Claypool Publishers, 2006. 
11. Greenlee, M.W., Heitger, F., “The functional role of contrast adaptation,” Vision Research 28(7), 791-797 

(1988). 
12. Foley, J.M., Chen, C.C., “Analysis of the effect of pattern adaptation on pattern pedestal effects: A two-process 

model,” Vision Research 37(19), 2781-2788 (1997). 
13. Abbonizio, G., Langley, K., Clifford, C.W.G., “Contrast adaptation may enhance contrast discrimination,” 

Spatial Vision, 16(1), 45-58 (2002). 
14. Bex, P.J., Solomon, S.G., Dakin, S.C., “Contrast sensitivity in natural scenes depends on edge as well as spatial 

frequency structure,” Journal of Vision 9(10):1 (2009). 
15. Haun, A.M., Essock, E.A., “Contrast sensitivity for oriented patterns in 1/f noise: contrast response and the 

horizontal effect,” Journal of Vision 10(10):1 (2010). 
16. Webster, M.A., Georgeson, M.A., Webster, S.M., “Neural adjustments to image blur,” Nature Neuroscience, 

5(9), 839-840, (2002). 
17. Peli E., “Contrast sensitivity function and image discrimination,” JOSA-A 18, 283-293 (2001). 
18. Haun, A.M., Peli, E., “Measuring the perceived contrast of natural images,” Society for Information Display 

Symposium Digest of Technical Papers 42, 302-304 (2011). 
19. Wilson, H.R., Humanski, R. “Spatial frequency adaptation and contrast gain control,” Vision Research, 33(8), 

1133-1149 (1993). 
20. Peli, E., “Limitations of image enhancement for the visually impaired,” Optometry and Vision Science 69(1), 

15-24 (1992). 
21. Watson, A.B., Ahumada, A.J., “A standard model for foveal detection of spatial contrast,” Journal of Vision 

5(9), 717-740 (2005). 
 

SPIE-IS&T/ Vol. 8292  82920E-7


	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close


