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There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants,
and other ‘‘sensory substitution devices’’ that use tactile or electrical stimulation. However, they all have
low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely
restricting their utility. To overcome these limitations, image processing or the imaging system could
emphasize objects of interest and suppress the background clutter. We propose an active confocal imag-
ing system based on light-field technology that will enable a blind user of any visual prosthesis to effi-
ciently scan, focus on, and ‘‘see’’ only an object of interest while suppressing interference from
background clutter. The system captures three-dimensional scene information using a light-field sensor
and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering
process removes the clutter based on blur difference. In preliminary experiments we verified the positive
impact of confocal-based background clutter removal on recognition of objects in low resolution and lim-
ited dynamic range simulated phosphene images. Using a custom-made multiple-camera system based
on light-field imaging, we confirmed that the concept of a confocal de-cluttered image can be realized
effectively.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An estimated 39 million people worldwide are blind (World
Health Organization, 2013) and 1.2 million people in the US are
legally blind and about 10% of them are functionally blind
(American Foundation for the Blind, 2011). Although blind people
can access text through braille and text to speech, independent
mobility indoors and outside is limited and largely relies on the
long cane. Blindness limits numerous activities of daily living
(Brown et al., 2001; Kuyk et al., 2008), particularly tasks requiring
visual search and object recognition. As a result, many pursuits
(vocational and social) are limited, especially when blindness
occurs in adulthood (Horowitz, 2004).

A number of implantable prosthetic vision systems have been
developed (Margalit et al., 2002; Ong & Cruz, 2012). Retinal
implants, such as the Argus II (Second Sight Medical Products, Syl-
mar, CA) (Ahuja & Behrend, 2013) and Alpha IMS (Retinal Implant
AG, Kusterdingen, Germany) (Stingl et al., 2013) recently received
FDA approval in the US and the CE mark in Europe, respectively.
Noninvasive sensory substitution devices (SSDs) have been
developed, such as the tactile graphic display (Chouvardas,
Miliou, & Hatalis, 2008), BrainPort V100 (Wicab, Middleton, WI)
tongue stimulation (Nau, Bach, & Fisher, 2013), and vOICe (Meta-
Modal, Pasadena, CA) auditory vision substitution (Ward &
Meijer, 2010).

Most of these systems use a video camera and convert the high
resolution scene captured into a format that can be conveyed by
the system transducer to the sensory organ. Although partial resto-
ration of vision through the prostheses is expected to help improve
the daily life of blind people, the utility of current visual prostheses
is limited by low spatial resolution, low dynamic range (the num-
ber of displayable or perceivable gray levels), and a narrow visual
field. The physical limitations of electrodes in implants and other
physiological stimulators in SSDs restrict the resolution and
dynamic range that can be delivered to the user. The current elec-
trode count of the Argus II retinal implant is 60 (10 � 6) electrodes
(Ahuja & Behrend, 2013) and expected to be about 1000 electrodes
in next versions (Singer et al., 2012), and Alpha IMS has 1500 elec-
trodes (Stingl et al., 2013). Similar limitations apply to most other
SSDs. For example, the BrainPort V100 has only 400 (20 � 20) elec-
trodes (Nau, Bach, & Fisher, 2013) to stimulate the user’s tongue.
The dynamic range of most SSDs is limited to binary (on and off)
or at most 3 or 4 levels (Chouvardas, Miliou, & Hatalis, 2008).
While the Argus II is capable of generating 31 brightness levels
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(Second Sight Medical Products Inc., 2013), only 4–12 levels of
dynamic range were successfully distinguished by patients in sim-
ple just-noticeable-difference experiments (Chen et al., 2009b). In
addition, the dynamic range for different visual prostheses is usu-
ally limited to less than that (Rizzo et al., 2003b) and only binary
dynamic range has been used for most test and calibration
(Ahuja & Behrend, 2013; da Cruz et al., 2013; Second Sight
Medical Products Inc., 2013).

The visual field of retinal prostheses is on the order of 10�
(Ahuja & Behrend, 2013), half the field diameter that qualifies as
legal blindness, and with a visual acuity of worse than 20/1260
(Humayun et al., 2012). Mean acuity score with the BrainPort
was reported as 20/5000 (Nau, Bach, & Fisher, 2013). With these
limitations, reading even a short word using the Argus II requires
minutes (Ahuja & Behrend, 2013) and interpreting a natural image
or a scene while walking is enormously difficult (Weiland, Cho, &
Humayun, 2011).

Although the performance improvements of visual prostheses
are often optimistically projected to overcome technical barriers
with increased electrode density (number of electrodes per
degree), a real hurdle lies within the biological limitations of the
interactions between the sensing organ and the stimulator that
bound the likely possible resolution (Rizzo et al., 2003a, 2003b).
Even if the electrode density is increased it is unlikely that visual
perception will increase in proportion to the increase in density.
Crosstalk between electrodes limits the improvement in effective
resolution (Horsager, Greenberg, & Fine, 2010; Wilke et al.,
2010), and that effect is expected to increase with higher density.
The perceived dynamic range attained with each electrode varies.
Even if the theoretical dynamic range from different levels of elec-
trode stimulation exceeds 8 levels and each electrode is calibrated
individually, the effective dynamic range does not increase propor-
tionally (Chen et al., 2009b; Palanker et al., 2005; Second Sight
Medical Products Inc., 2013). Until improved system interfaces
are developed, improving image processing to deliver the most
effective images to the stimulator is a practical and promising
approach that will remain useful even when prostheses with
higher effective resolution and dynamic range become available.

Visual clutter causes crowding and masking, thus reducing per-
formance of tasks such as object segmentation, recognition, and
search (Rosenholtz, Li, & Nakano, 2007). Fig. 1a illustrates typical
real-world visual clutter caused by a complex background, where
the near object (pedestrian) is cluttered by background objects
(tree and building). While an observer can easily separate such
objects for recognition in a high resolution and color image
(Fig. 1b), with limited resolution and dynamic range (Figs. 1c and
Fig. 1. Illustration of the proposed removal of background clutter for visual prostheses. (a
(3D) scene that includes a pedestrian in front of a tree and a building behind the tree. (b)
head-mounted camera. In the color high resolution image, the overlapping objects of inte
low resolution (about 1,000 pixels), even with 8-bit grayscale, recognition is severely imp
resolution makes it difficult if not impossible to recognize the objects. (e) If the backgrou
the OI (e.g., the nearest pedestrian) will remain, thus object recognition through the visu
figure legend, the reader is referred to the web version of this article.)
d) background clutter may mask bordering objects. The low resolu-
tion and dynamic range phosphene-like images created by current
systems are difficult to interpret, even when the simulated images
are examined with normal vision (Chen et al., 2009a; Parikh et al.,
2009; Wang, Yang, & Dagnelie, 2008). Although a few studies
(Humayun et al., 2012; Nau, Bach, & Fisher, 2013; Zrenner et al.,
2011) have shown that letters and objects can be recognized by
visual prosthesis users, the patients’ performance was typically
demonstrated under an ideal experimental condition, where the
high contrast target object is presented in front of white or other
uniform background. The reported success demonstrated in such
clean laboratory settings without background clutter does not rep-
resent the visual prostheses’ practical utility under real-world con-
ditions, where a visual prosthesis with an imaging system that can
effectively suppress background clutter and show only the object
of interest (OI) is needed, as illustrated in Fig. 1e.

Effective compression of the camera’s video to match the lim-
ited resolution and dynamic range of the prosthetic systems is cru-
cial, but so far only basic image processing techniques have been
applied (Chen et al., 2009a), such as binary thresholding (or coarse
quantization in the spatial and dynamic range domains), edge
detection, and image segmentation. Other higher-level analyses
based on image saliency (Al-Atabany et al., 2013; Parikh, Itti, &
Weiland, 2010; Weiland et al., 2012) or face detection (Li, 2013)
were proposed for targeting (selecting a portion of the scene).
These approaches are orthogonal to the problem we are address-
ing. For example, computer-vision tools may be used to segment
the image into regions or even distinct (identified) OIs (e.g., faces).
The segmented image can be used to present a schematic or iconic
illustration, instead of an image, making it potentially more suit-
able to the limited capability of the prostheses. This approach
was suggested for optogenetic prostheses (Al-Atabany et al.,
2013), and for retinal prostheses (McCarthy, Barnes, & Lieby,
2011). In the latter case, a depth camera using structured light
(Boyer & Kak, 1987) was used to help with the segmentation task.
Segmenting an image is not sufficient, without some sort of addi-
tional recognition to isolate the OI and suppress the remainder.

Various types of depth cameras can be used to obtain 3D dis-
tance information that may be helpful in segmenting an OI, and
such techniques have been applied to visual prostheses (Hao, Ro,
& Zhigang, 2013; Li, 2013; Lieby et al., 2011; McCarthy, Barnes, &
Lieby, 2011). A structured light camera (Kinect, Microsoft, Red-
mond, WA) or time of flight camera (Lange & Seitz, 2001) are on
one end of the spectrum for acquiring 3D information, while ste-
reo-cameras or multiple-cameras (Lieby et al., 2011; Hao, Ro, &
Zhigang, 2013) are on the other. Although infrared (IR)-based tech-
) A blind person with visual prosthesis facing a schematic natural three-dimensional
The overlapping objects at different depths that clutter each other are captured by a
rest (OIs) can be easily separated perceptually. (c) Following image compression into

acted. (d) Compressed binary image (simulated phosphene vision) at the same low
nd clutter is removed by using image processing or other imaging technology, only
al prostheses will be improved. (For interpretation of the references to color in this
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nologies such as the structured light and time-of-flight cameras
effectively measure the depth information, the utility of IR technol-
ogy outdoors is limited by interference from the IR radiation of
sunlight (Chéné et al., 2012; El-laithy, Jidong, & Yeh, 2012). Stereo
or multiple cameras are not limited by outdoor use. However, cor-
rectly calculating depth from disparity is difficult and requires high
computational power and time. Object segmentation and recogni-
tion algorithms are not very accurate, not easy to implement, and
require high computational power. Even if the depth map is accu-
rately extracted using an IR-based depth camera, the need remains
for additional depth segmentation and object recognition pro-
cesses to isolate and display only the OI and remove the back-
ground. Computer-vision tools needed for that are prone to
errors around the edges of objects, exactly where we want to sup-
press cluttering in visual prostheses.

Most importantly, an interactive approach, allowing the user to
select OIs from a small subset of depth planes is much more effec-
tive than image processing designed for machine vision. We pro-
pose an improved imaging system for visual prostheses that
captures a confocal image at a depth (focal) plane selected by the
user, and presents only the OIs in-focus at that depth plane. The
system automatically suppresses background clutter from objects
(out of focus) in other depths. The user’s intent, familiarity with
the environment, and situational awareness will guide real-time
selection of the depth plane while searching in the depth direction.
Our system also limits the search for OIs by pre-selecting depth
planes where objects are likely to appear by measuring the coher-
ence of edges at each depth with the edges appearing in a wide
depth of focus image of the scene. The user can also actively scan
laterally and vertically, reducing the impact of the limited field-
of-view, either through a manual interface or more naturally with
head movements. Then the user can actively zoom in on detected/
selected objects for better detail. We call this ‘‘active confocal de-
cluttering’’. In Section 2, we first show how the confocal de-clutter-
ing process can be implemented. Section 3 assesses the benefit of
de-cluttering, and Section 4 describes and demonstrates imple-
mentation with light-field technology.
2. Active confocal de-cluttering

Our proposed system of active confocal imaging for visual pros-
theses is composed of three stages; confocal image generation, de-
cluttering, and image compression into a format suitable for visual
prostheses. Confocal images from depth-sliced information are
widely used in tomographic medical imaging, microscopy, and
inspection, based on technologies including X-ray, CT, and MRI,
confocal scanning laser ophthalmoscopy and optical coherence
tomography used in retinal imaging. These methods scan and cap-
ture multiple narrow depth of field (DOF) or tomographic images
with changing focal planes, which capture only objects in a focal
plane, suppressing other depth planes by blur or blocking light.
Similarly, a simple narrow DOF camera lens (low f-number) can
capture a depth sliced image of OIs at a focal plane with blurred
background in other depths, and generate confocal images at dif-
ferent depth planes. Recently, another confocal imaging method
based on light-field was developed and commercialized (Harris,
2012; Ng et al., 2005) which will be discussed in Section 4. In active
confocal imaging for visual prostheses, as in other applications, the
main purpose of any confocal image capture method is suppression
of clutter from other depths.

Fig. 2 illustrates the difference between compressed images
obtained with conventional wide-DOF imaging and narrow-DOF
confocal imaging. While a conventional camera image with wide
DOF (Fig. 2a) focuses on both the OI and the background, the nar-
row-DOF confocal image (Fig. 2e) highlights only the OI (cup) at
the selected depth plane against a blurred background (book-
shelves). Even though, when viewed with normal vision the confo-
cal image naturally suppresses the background clutter and
emphasizes only the OI at the selected depth plane, it is insuffi-
ciently effective when applied with the high level of compression
common in visual prostheses.

With the limited resolution and dynamic range of current visual
prostheses, additional processing is required to suppress or remove
the background clutter that is only partially suppressed by blur in
the confocal image. This can be achieved if the confocal image is
high-pass filtered or analyzed by some other blur metric followed
by thresholding set to more completely exclude the blurred back-
ground. We name this process ‘‘confocal de-cluttering’’.

Fig. 3 shows versions of the conventional and confocal images of
Fig. 2, processed via edge filtering. The edge images in Figs. 3a and
c were obtained by Sobel edge detection (Sobel & Feldman, 1968)
as an example, but any other edge detection methods, high-pass
filter, or blur-metric algorithm (Lee et al., 2008; Park, Hong, &
Lee, 2009) with appropriate thresholding can be applied to de-clut-
ter the blurred background effectively. The confocal de-cluttered
image shows only an outline of the OI and the blurred background
is removed by edge filtering, whereas edges of the background in
the compressed conventional image clutter the OI. Although we
chose a clear object (cup) to be recognized as an example in
Fig. 3, the handle of the cup in a conventional compressed edge
image (Fig. 3b) is hardly recognizable. However, that detail in the
compressed confocal de-cluttered image (Fig. 3d) is recognizable,
with not only the shape of the cup but also the handle visible. In
Section 3, a pilot study further demonstrates the positive impact
of background clutter removal on recognition of compressed bin-
ary images.
3. Impact of background removal on object recognition

To determine the impact on object recognition of background
de-cluttering using confocal imaging and its interaction with reso-
lution, we conducted a preliminary study using an image dataset of
objects captured by both narrow and wide DOF lens settings.
3.1. Materials

We created a dataset of images of 20 objects photographed
under two conditions. Household items and office equipment were
photographed in front of complex backgrounds as shown in Fig. S1
in the online supplement. Each object was captured by both nar-
row and wide DOF settings controlled by the f-number of the cam-
era lens to simulate the confocal and conventional images,
respectively. The images were captured by a NEX-3N (Sony, Tokyo,
Japan) mirror-less camera with 50 mm focal length, minimum f/1.7
lens (Minolta, Osaka, Japan). We captured the same scene once
with f/1.7 for the narrow DOF confocal image and once at f/22 to
represent a conventional camera with wide DOF, as in the micro
cameras used in cell phones and likely to be used in prosthetic
vision devices. Although f/22 is not a typical setting for the indoor
scene, we used it to clearly show the effect of cluttering by the
background. The horizontal visual angle of the camera lens was
25�. The dataset images were taken from about 80 cm in front of
the objects to maintain an angular size of the objects of about 10�.

In framing the photos and focusing the camera, we assumed
that the prosthetics user would aim the camera at the OI and select
the depth plane of the object (in Section 4.2, we describe a method
for automatically pre-selecting a few depth planes to support effi-
cient scanning in depth). The image viewpoint was selected to
cover the whole object and emphasize the outline and distinct fea-
tures of each object (the most recognizable viewpoint). We placed



Fig. 2. Comparison of the effect of compression (low resolution and dynamic range) on a conventional (wide DOF, a–d) and confocal (narrow DOF, e–h) image; a cup in front
of a complex background (bookshelves), as captured by conventional camera. When converted into low resolution (38 � 25, 950 pixels) and low dynamic range images such
as (b) 8-level, (c) 4-level, and (d) binary, the background detail of the wide DOF image clutters the OI more as the dynamic range decreases. (e) With the scene captured by
using confocal imaging (narrow DOF) at the selected depth plane, only the OI is in-focus and the background is naturally suppressed by blur. However, the background
suppression in the compressed images (f–h) is not as apparent as in the original image. As dynamic range gets lower, the natural background suppression effect of confocal
imaging is diminished.

Fig. 3. Illustration of the impact of the confocal de-cluttering. The images in Fig. 2a and e were processed by edge detection and are shown here in (a) and in (c), respectively.
Following compression of the image in (a) into the low resolution and dynamic range of visual prostheses, much detail of the background remains and clutters the OI in (b)
and makes recognition difficult. With the confocal de-cluttered image shown in (c), the edge filtering removes the background clutter and leaves only the OI at the selected
depth visible, even with compression, as shown in (d). The latter is easier to recognize, especially with regard to the handle of the cup.
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each object in front of a complex background such as bookshelves,
clothes, wires, and files and aimed the camera to have the OI in the
bottom center of the frame and maximally overlap the OI and
background, without including much floor or table surface.
Although the images were staged purposely with high background
complexity, we strove to create realistic scenes.

After capturing the images with blurred and focused back-
grounds, we applied Sobel edge filtering (Sobel & Feldman, 1968)
as the confocal de-cluttering process. Although numerous edge
detection methods are available, we chose Sobel because it is
widely used and easily implemented in real time. Object recogni-
tion of edge images has been shown to not be significantly related
to the edge detection method (Dowling, Maeder, & Boles, 2004).
The edge detection process was performed on the images after
scaling down to a moderate resolution (492 � 327) that is consis-
tent with the resolution of current light-field cameras discussed
in Section 4. Although automated methods for selecting an optimal
threshold for edge detection are available (Yitzhaky & Peli, 2003),
we adjusted the threshold of the edge filter manually for each con-
focal image, aiming to fully remove the suppressed background
clutter and leave only the OI in the edge filtered image. The same
threshold was then applied to edge filtering for the paired conven-
tional, wide DOF, image.

Following edge detection, the confocal de-cluttered image and
the edge image (from the conventional cluttered image) of each
object were compressed into 7 additional levels of resolution, using
non-overlapping windows of: 2 � 2, 3 � 3, 5 � 5, 7 � 7, 13 � 13,
18 � 18, and 40 � 40 pixels, resulting in compressed images of:
246 � 164 (40,344 pixels), 164 � 109 (17,876 pixels), 98 � 65
(6370 pixels), 70 � 47 (3290 pixels), 38 � 25 (950 pixels),
27 � 18 (486 pixels), and 12 � 8 (96 pixels), respectively. The com-
pression was performed using the following procedure: The ratio
of edge pixels to non-edge pixels for all non-confocal edge images
of the dataset was averaged and found to be 1/13 (7.7%). The com-
pressed images were adjusted to maintain the same ratio by set-
ting this ratio as the threshold for the compression at each
window. If the number of edge (white) pixels in a compression
window exceeded this ratio, the compressed pixel was set to
white. If it fell below this ratio, the pixel was set to black. The same
compression procedure and threshold were applied to both the
conventional edge and confocal de-cluttered images.

Figs. 4 and 5 show the edge-filtered conventional and confocal
de-cluttered images, respectively, compressed into 950 pixels.
Although 950 electrodes is higher resolution than most current
visual prostheses, it is still difficult to recognize the OIs with back-
ground clutter (Fig. 4). However, the OIs in the compressed confo-
cal de-cluttered images with the same resolution (Fig. 5) are more
likely recognizable than the compressed non-confocal edge images
despite some residual noise, though it is by no means a trivial task.

The interaction of background removal with visual prosthesis
resolution is illustrated in Figs. 6 and 7, where compressed images
at 8 different resolution levels are compared with and without
background clutter, respectively. Even at a resolution over 3,000
pixels, 2 or 3 times higher than the current or anticipated next-
generation retinal implant, the complex background clutters the
OI and makes the OI difficult to recognize (Fig. 6d). The compressed
confocal de-cluttered image emphasizes the OI and enables recog-
nition at a lower resolution level (Fig. 7). By increasing the resolu-



Fig. 4. The 20 dataset images in non-confocal conventional photography compressed into 950 pixels (38 by 25) following the edge detection process. Compressing the edge
images results in cluttering of objects and disruption of the borders between the OI and background. To recognize the OI with these imaging, higher resolution or dynamic
range is required.
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tion, the recognition of the OI and its details becomes easier. In
Section 3.2, we measure the object recognition rate in background
de-cluttered and cluttered conditions, using this created dataset.
3.2. Object recognition test

3.2.1. Methods
A preliminary object recognition test was performed with 6

normally sighted subjects (3 women), aged 24–42, using the image
dataset (Section 3.1). The study was approved by the Human Stud-
ies Committee of the Massachusetts Eye and Ear and written
informed consent was obtained. The 20-object images were ran-
domly ordered within blocks of the same compression level and
same background condition (cluttered versus de-cluttered). The
presentation of a block of images always started from low resolu-
tion and proceeded to higher resolution. At each compression level,
randomly ordered presentations of the background-cluttered
images of 20 objects were followed by a block of background-de-
cluttered images. This sequence of 320 images was displayed on
a 2100 P1130 Trinitron CRT monitor (Dell Inc., Round Rock, TX) at
1280 � 1024 resolution and observed by subjects from 80 cm
away. The size of all images was 14.6 cm by 9.7 cm, spanning a
visual angle of 10.4� � 6.9�. The image sequence was displayed at
the center of the screen surrounded by a blue border so that sub-
jects easily distinguished the area of the image.

We explained the task to subjects during a training session.
First, at full resolution (160,884 pixels, 492 � 327), conventional
and confocal images were shown followed by the edge-filtered
and compressed (decreased resolution) images. The subjects were
informed of the categories of objects presented (household items
and office equipment), the average size of objects (all objects were
smaller than the 2100 monitor screen), and the position of objects in
the images (bottom center). The viewpoint for image acquisition
was disclosed to the subjects. The specific object recognition task
was then performed with background cluttered and de-cluttered
images with the 8 different levels of resolution as a training ses-
sion, to familiarize the subjects with the interpretation needed
by the low resolution edge images. We also discussed with the sub-
jects the nature of the edge images and the cluttering at low reso-
lution. Following a training session with 3 different objects,
subjects commenced the main task. Subjects could guess the OI
or pass on difficult scenes after 1 min. If they could not name the
recognized object, they were allowed to describe the use of the
object, details of its shape, or specific features. The operator wrote
down the subjects’ responses, but no feedback or correction was
provided. In deciding the veracity of responses, describing the
use of the OI had a higher value than a general description of the



Fig. 5. The confocal de-cluttered images shown in Fig. 4 compressed in the same way. With the removal of background clutter using confocal de-cluttering, it is possible for at
least a few objects to be recognized, even at this resolution.

Fig. 6. A background-cluttered image compressed into different resolutions. (a) 96 pixels, (b) 486 pixels, (c) 950 pixels, (d) 3,290 pixels, (e) 6,370 pixels, (f) 17,876 pixels, (g)
40,344 pixels, and (h) 160,884 pixels. As the resolution increases, the cluttering declines and overlapped outlines are separated. However, the recognition of the OI is still not
easy at least until the level shown in (e).
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object shape. For example, although the shape of the helmet is
much closer to an upside-down bowl than a hat or cap, we chose
hat or cap as a correct response and rejected the upside-down bowl
as a mere description of the shape and incorrect recognition.
Because these cases were very rare (11/1,920 = 0.6%) in this exper-
iment, these decisions did not affect the results.
We used binary logistic regression (Bender & Grouven, 1998) to
estimate the impact of background removal on object recognition,
to provide statistical inference of the differences among the 20
objects, and the impact of 8 resolution levels. Binary logistic
regression is used to predict a categorical (usually dichotomous)
variable from a set of predictor variables. With a categorical depen-



Fig. 7. The background de-cluttered image compressed into the same resolution levels as in Fig. 6. Overall, the object is easier to locate and recognize in these images than in
those shown in Fig. 6. Although the background clutter is removed at all levels, details of this OI are not easily resolved below level (d). Note that zooming in on the object will
improve the resolution and enable recognition at higher levels of compression.

Fig. 8. The recognition rates of the 20 objects by the 6 subjects as a function of
resolution. The recognition rates started to increase rapidly at about 1,000 (103) and
about 3,100 (103.5) pixels in background de-cluttered and cluttered conditions,
respectively. The recognition rate with the background de-cluttered condition was
higher than with the background cluttered condition. Weibull psychometric
functions were fitted to the data.

188 J.-H. Jung et al. / Vision Research 111 (2015) 182–196
dent variable, binary logistic regression is often chosen if the pre-
dictor variables are a mix of continuous and categorical variables
and/or if they are not normally distributed. Binary logistic regres-
sion has been especially popular with medical research in which
the dependent variable is whether or not a patient has a disease
(Press & Wilson, 1978). In this study, we used binary logistic
regression because the response of subjects is binary (recognized
or not) and other variables were a mix of continuous (log of reso-
lution) and categorical (object number) variables.
Fig. 9. The number of pixels required for 50% recognition rate by each subject under
background cluttered and de-cluttered conditions. Each marker is slightly off center
to prevent overlapping of markers. The 50% threshold of recognition rate over all
subjects’ responses is at a resolution of 8,695 pixels with cluttered background and
3,532 pixels with de-cluttered background as illustrated in gray bars. The dashed
line (at 1,500 pixels) indicates the resolution of current and next-generation visual
prostheses.
3.2.2. Results
Fig. 8 shows the recognition rate over all 6 subjects’ responses.

The 20-object recognition rates of all 6 subjects (120 responses at
each resolution level) are represented separately for the back-
ground cluttered and de-cluttered conditions, and are fitted with
a Weibull psychometric function (Wichmann & Hill, 2001) using
Psychtoolbox (Psychtoolbox-3; www.psychtoolbox.org) with MAT-
LAB (MathWorks, Natick, MA). Because some subjects failed to rec-
ognize some objects, even at the highest resolution with
background cluttered or de-cluttered conditions, the psychometric
functions are not forced to reach 100% recognition. The data and
fitting for individual subjects are provided in the online supple-
ment (Fig. S2).

The recognition rate with the background cluttered condition
improves from about 1,000 pixels. It saturated at about 10,000 pix-
els. The fitted psychometric curve for the confocal de-cluttered
condition is to the left of the curve obtained with the background
cluttered. The 50% recognition threshold for the conventional com-
pressed edge images required a resolution of 8,695 (about
114 � 76) pixels, while for the de-cluttered images the same 50%
performance was achievable at a resolution of 3,532 pixels (about
73 � 48). Fig. 9 shows the resolution required for a 50% recognition
rate for each subject under background cluttered and de-cluttered
conditions. When the compressed resolution was higher than
31,000 (104.5) pixels, subjects could recognize most objects regard-
less of the background condition. For resolutions lower than 100
pixels, most objects could not be recognized by subjects regardless
of background condition. With the 1,000 to 10,000 pixel resolu-
tions targeted by foreseeable future retinal implants, the recogni-
tion rates were clearly improved by de-cluttering (see the full
curves for all 6 subjects in Fig. S2 in the online supplement).

The binary logistic regression was performed with all 1920 tri-
als from the 6 subjects. The model and parameters were estimated
in SPSS 11.5.0 (SPSS, Chicago, IL). Overall about half of the
responses (1,028/1,920 = 53.5%) did not recognize and 46.5%
(892/1,920) responses correctly recognized the OI. The predictor

http://www.psychtoolbox.org
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variables were: the background, 19 dummy variables coding the
objects, and a continuous variable for resolution. The back-
ground-cluttered condition and the first object (object 1) were
set as the reference for dummy variable coding. The model cor-
rectly classified 90.3% of the correct OI recognitions and 91.0% of
incorrect recognitions (including no response/passes). Employing
an a < 0.05 criterion for statistical significance, the background
condition, the resolution, and 14 of the object dataset dummy vari-
ables had significant partial effects.

In the binary logistic regression model from all subjects’
responses, the impact of each variable was predicted by the model
as an odds ratio (OR).1 The model-predicted odds ratio for recogni-
tion of images with the background cluttered condition to the back-
ground de-cluttered condition is 5.6 (a < 0.01), indicating that when
holding all other variables constant, a confocal de-cluttered image is
5.6 times more likely to be recognized than a conventional back-
ground-cluttered image. If the recognition rate (p0) of background-
cluttered images is selected as reference, the recognition rate of
background de-cluttered images (p) could be predicted by the odds
ratio from the model as shown in the following equation:

p ¼ OR � O0

1þ OR � O0
¼

OR � p0

1�p0

� �

1þ OR � p0

1�p0

� � : ð1Þ

For example, if the conventional compressed image (back-
ground cluttered) is the reference and its recognition rate is 50%,
the recognition rate of confocal de-cluttered images (background
de-cluttered) is expected to be 84.9% based on the odds ratio
(5.6) from the model. On the other hand, if the recognition rate
of confocal de-cluttered images is 50%, the recognition rate of con-
ventional compressed images is only 15.1%. These results are con-
sistent with the psychometric function fitting for each subject
(Fig. S2) and responses accumulated over all subjects as shown
in Fig. 8. The 95% confidence interval (CI) of the odds ratio for back-
ground is from 3.9 to 8.1 verifying that background removal using
confocal de-cluttering improves the object recognition perfor-
mance substantially and significantly.

Similarly, the odds ratio for resolution was analyzed using the
binary logistic regression model. Because the resolution was
increased logarithmically, the odds ratio was analyzed by the com-
mon logarithm of the resolution. The recognition rate increases
exponentially with increased resolution. The model predicted odds
ratio of the common logarithm of resolution is 74.5 (a < 0.01) and
the 95% CI is from 48.9 to 113.5. This means that the recognition
rate is increased 74.5 times by a resolution increment of 10 times.
For example, if the recognition rate in most compressed images (96
pixels) is assumed to be 1%, the recognition rates in each resolution
log step are predicted by the model to be 10.3%, 23.8%, 66.6%,
84.2%, 96.1%, 98.8%, and 99.8%.

We tried to adjust the difficulty of images in our dataset to be as
uniform as possible using a similar camera viewpoint, object posi-
tion, size, and background complexity. The overall difficulty of the
task is highly dependent on the subject’s prior experience and abil-
ities. The relative difficulty among objects in the dataset compared
with object 1 as a reference (arbitrarily selected) was analyzed by
the odds ratio from the model. The relative difficulty of object rec-
ognition was analyzed using the false recognition rate because the
difficulty is based on the probability of failure to recognize.
Although this analysis is limited by the small sample size and gen-
1 OR is defined as the ratio of the odds (O) with a variable to the odds (O0) of a
reference, where p is the probability of the binary event, the complementary
probability is 1 � p, and the odds of an event are defined as p/(1 � p). Therefore,
where p is the recognition rate with a variable and p0 is the recognition rate of the
reference for this variable in this experiment, the odds of reference (O0) is defined as
p0/(1 � p0).
erating a final data set was not the main purpose of this experi-
ment, at least the result of this analysis showed that recognition
difficulties were moderately balanced a cross samples in the data
set. The detailed results are provided in the online supplement
(Fig. S3 in the online supplemental materials).

We verified the impact on object recognition of background de-
cluttering using a conventional camera with narrow-DOF lens. In
Section 4, we present a confocal image generation method based
on light-field imaging (Harris, 2012; Ng et al., 2005) and illustrate
the blur-based de-cluttering process applied to the confocal image
obtained from the light-field image. Then, a zooming function is
included to improve object detail.
4. Active confocal de-cluttering using a light-field camera

4.1. Confocal de-cluttering based on light-field

The simplest way to acquire a confocal image without a com-
plex optical setup is to use a low f-number camera lens, as we used
in the preliminary object recognition test. However, the low
f-number means the aperture size has to be wide and the focal
length has to be short, which results in heavy weight and a bulky
lens. The motorized mechanical and optical parts for changing
focal distance also increase the volume and weight of the lens,
making it inappropriate to use in a miniaturized head- or
glasses-mounted camera for visual prostheses. If a scene has multi-
ple OIs at different distances, a conventional camera lens has to
change the focus for each OI and scan the whole depth range
mechanically. Since this process requires mechanical adjusting of
the focal distance, this method cannot be implemented for practi-
cal use, as image acquisition at high frame rates is required. Most
importantly, the confocal functionality (narrower DOF) of a low
f-number lens is not sufficient to clearly de-clutter background,
because the DOF of conventional camera widens too rapidly with
increasing the focal distance (Maiello, 2013).

We propose a confocal imaging system for visual prostheses
based on a confocal technology called ‘‘light-field’’ imaging
(Harris, 2012; Ng et al., 2005) to achieve confocal images effec-
tively in a portable and cosmetically acceptable size. Confocal
imaging based on light-field technology was first proposed as a
3D display technology termed integral imaging (Jung et al., 2012;
Kim et al., 2014; Lippmann, 1908). A light-field image (or elemental
image) contains all angular and spatial information of light from a
3D scene, captured by a two-dimensional microlens array (or an
array of multiple cameras), where each lenslet provides a slightly
different viewpoint (Harris, 2012; Ng et al., 2005). Current com-
mercial light-field cameras such as those from Lytro (Lytro Inc.,
Mountain View, CA) and Raytrix (Raytrix GmBH, Kiel, Germany)
use a microlens array with relay optics, where each lenslet in the
micro lens array and the corresponding subset of CCD sensor pixels
under it acts like an individual camera system.

Fig. 10 illustrates a simulated elemental image of the schematic
3D scene of Fig. 1. We simulated the three different plane images of
the pedestrian, tree, and building to be respectively located at 1 m,
4 m, and 9 m and minified 40 times by relay optics in front of the
lens array (1 mm pitch with 3 mm focal length). The angular and
spatial information of the three plane images at different depths
was computationally projected on the elemental image (Fig. 10
left) at the focal plane of lens array by ray tracing through each
lenslet (Min et al., 2001). Each subset image of the elemental image
captured by each lenslet is the same as the image that would be
captured by a camera in an array of multiple cameras, but it has
a reduced two-dimensional resolution (10 by 10 in Fig. 10) because
of the divided CCD resolution. The ensemble captures the depth
information as a trade-off for the resolution loss (inset of



Fig. 10. Details of a simulated elemental image (light-field information) shown in
two magnified insets. The simulated scene of Fig. 1 was captured by a simulated
(computed) light-field camera composed of a 1 mm pitch lens array behind relay
optics and in front of a CCD sensor. Each inset shows a magnified 9 � 10 subset of
the elemental image. Each subset represents a different perspective view (with low
resolution of 10 � 10 in this simulation) captured by a lenslet in a different position.
The total light-field image contains the full 3D information of the scene.
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Fig. 10). Luckily, losing some resolution in the image capture is a
very low cost to pay in our application, as the image resolution
needs to be compressed even further to be presented in a pros-
thetic vision device.

This over-informative data permits 3D visualization for display
(Jung et al., 2012; Kim, Hong, & Lee, 2010; Kim et al., 2014;
Lippmann, 1908), reconstruction of objects (Jung et al., 2010;
Kim et al., 2013) or generation of a confocal image (Hong, Jang, &
Javidi, 2004; Stern & Javidi, 2006). A 3D point captured by each lens
in the array which covers the 3D point within its viewing angle can
be reconstructed by a similar setup of lens array and other relay
optics (Kim, Hong, & Lee, 2010; Kim et al., 2014; Lippmann,
1908). If a two-dimensional (2D) screen is placed at the depth of
the reconstructed 3D point, the 3D point is projected in-focus on
the 2D screen. If the screen is moved away from the depth of the
3D point to another location, an out-of-focus blurred image of that
3D point will be cast on the screen (Hong, Jang, & Javidi, 2004;
Stern & Javidi, 2006). Thus, only the 3D points located at the depth
of the screen are focused and other points at each depth plane are
blurred.

If the reconstruction and projection processes are performed
computationally using ray tracing (Hong, Jang, & Javidi, 2004;
Stern & Javidi, 2006) rather than the optical reconstruction with
a lens array, each projected image on the screen at the different
depths is a confocal image and the depth plane of the screen is
the confocal distance. It does not require an additional depth
map extraction process (Hong, Jang, & Javidi, 2004; Stern &
Javidi, 2006) and can also generate all-in-focus image (cluttered
image) in addition to the confocal image (Harris, 2012; Ng et al.,
2005). Because light-field confocal imaging is based on the compu-
tational projection of a subset of the elemental image through each
lens in the array and the summation of their brightness, each sim-
ple projection calculation can be performed in parallel and the
computational load needed to sum the projected elemental image
pixels is low enough to be realized in real-time (Harris, 2012; Kim,
Erdenebat, et al., 2013; Kim et al., 2013). Fig. 11 shows the compu-
tationally-generated confocal images in different depths from the
simulated elemental image of Fig. 10.

Whereas optical confocal imaging as used in microscopy sys-
tems captures only one distance (confocal image) per frame, a
light-field camera can capture the elemental image in one expo-
sure/frame and generate multiple confocal images through rapid
computation, without any mechanical movements. In addition,
the light-field camera can generate the confocal image with a
DOF narrower than a single narrow-DOF lens. Whereas the DOF
in a single lens is limited by the designed f-number (focal length
divided by aperture size), the f-number of a light-field camera
can be controlled by the synthesized aperture of the light-field
camera (Levoy et al., 2004; Ng et al., 2005) instead of the physical
aperture of a single camera lens. With a multiple-camera array, the
same lens can create a much smaller f-number using a synthetic
aperture (Levoy et al., 2004; Ng et al., 2005) determined by the dis-
tance between cameras.

Following generation of the confocal image an additional de-
cluttering process is needed to remove/suppress blurred back-
ground clutter. Various methods may be implemented to suppress
the low spatial frequency portion of blurred background clutter for
light-field confocal imaging, such as edge detection (Aloni &
Yitzhaky, 2014) and blur metric (Lee et al., 2008; Park, Hong, &
Lee, 2009). Fig. 12 shows the confocal de-cluttered versions of
the images in Fig. 11 using Sobel edge detection.

Fig. 13 shows the final result of the confocal de-cluttered
images, compressed into the low resolution (980 pixels) and
dynamic range (binary) format of prosthetic vision devices and
SSDs. Although object recognition from these compressed images
is challenging, the user can gain some situational awareness by
scanning through the depth planes shown. An automated tech-
nique that eliminates the non-object planes (e.g. Figs. 13b and d)
is discussed in Section 4.2.

Once an OI is found in an object-containing plane, the user may
want to zoom in on the detected/selected OI for more details. The
zooming can be manually controlled and used to fill the field of
view of the prosthesis or even overfill the field of view, and be used
in conjunction with horizontal and vertical scanning which is very
natural and easy to conduct (Hwang, Peli, & Peli, submitted for
publication). Zooming in this case may not necessarily involve
any magnification, scaling, or mechanical/optical movement;
instead the high-resolution confocal de-cluttered image can be
cropped and then compressed to a lesser extent to fit the dimen-
sions of the prosthesis. Because the confocal de-cluttered image
has higher resolution than the resolution of visual prostheses, the
compressed confocal de-cluttered image (Fig. 14c) of the cropped
image (Fig. 14b) includes much more OI detail than the original
fully-compressed image (Fig. 13a). The impact of the zooming by
cropping is not coming from magnification per se but rather from
the lower level of compression applied. Note that the zooming by
cropping is also more economical computationally.

4.2. Automatic detection of confocal distance of objects of interest

The user of this system can scan in depth and identify planes
with a potential OI by changing the confocal depth plane. This
requires scanning through the whole depth range, which may be
inefficient. To reduce the scanning time, we employed a new
method that isolates the focused regions from the reconstructed
image planes, enabling automatic detection of planes that may
contain OIs (Aloni & Yitzhaky, 2014). This algorithm is based on
the assumption that the object details located at the depth of a
reconstructed plane are fully focused, while objects at other depths
are blurred. The focused regions in the reconstructed plane images



Fig. 11. Confocal images (308 � 385) in different depth planes generated from a simulated elemental image frame obtained computationally (Fig. 10) from the simulated 3
plane scene of Fig. 1. (a) The confocal images at the depth plane of the pedestrian (1 m), (b) between the pedestrian and the tree (2.5 m), (c) of the tree (4 m), (d) between the
tree and the building (6.5 m), and (e) of the building (9 m). Animation 1 in the online supplement shows the confocal image sequence being scanned between near and far in
depth.

Fig. 12. Confocal de-cluttered images (308 � 385) at the different depth planes shown in Fig. 11, achieved through Sobel edge detection. Note that although there are only 3
objects in different planes in the original simulated scene, additional depth planes between objects were selected (in b and d). These intermediate depth planes (b and d) do
not provide as good a result as the confocal de-cluttered image at object planes (a, c, and e). Animation 2 in the supplement shows the confocal de-cluttered image depth
sequence obtained from one elemental image frame.

Fig. 13. Confocal de-cluttered images of Fig 12 are compressed to fit the limited resolution of a 980 pixel (28 � 35) visual prosthesis. Animation 3 in the supplement shows
the compressed confocal de-cluttered images in sequence, obtained from one elemental image frame.

Fig. 14. Effect of zooming using cropping of the high resolution confocal image before confocal de-cluttering and compression. (a) Zoomed OI in the high resolution confocal
image of Fig. 11a using cropping and therefore requiring a lesser compression. (b) The confocal de-cluttered zoomed image has a higher level of details. (c) With zoom
preceding compression, more detail can be preserved in the low resolution compressed image than the compressed result without zooming of Fig. 13a.
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consist of higher spatial frequencies compared to the blurry
regions. We enhance the sharp edge regions using a gradient-like
operation (in three directions) obtained using the first-scale Haar
wavelet transform (Mallat, 1989). Then, with an adaptive threshold
in each sub-band of the wavelet we detect the sharpest edge loca-
tions (Aloni & Yitzhaky, 2014). As the threshold applied to the
wavelet sub-band is decreased, the number of detected edge pixels
is increased. In the adaptive process, the threshold is adjusted to
set the number of detected edge pixels to 0.5% of all pixels in the
sub-band (Aloni & Yitzhaky, 2014).

To determine the depth of objects in the light-field image, first,
the edge detection operation is repeated for reconstructed planes
at many distances and also for a center view image (center subset
of elemental image-wide DOF). Then, for each distance, the num-
ber of edge pixels in each confocal plane that overlap (collocate)
with edge pixels of the the center view image (all-in-focus image
or center elemental image) is counted. The rate of overlapping edge
pixels is expected to achieve local maxima at depth planes that
contain objects, because objects at these planes appear sharp in
both the reconstructed planes and the center view image, thus pro-
ducing edges at similar locations. Edge pixels at blurred planes are
either suppressed or shifted slightly and thus do not overlap with
the sharp edges in the elemental image, resulting in a smaller
number of intersecting edge pixels for these planes. A graph show-
ing the result of this process is presented in Fig. 15, as calculated
for the image shown in Fig. 16. Two local maxima are seen; one
very sharp at about 0.6 m and one less distinct but clear at about
3 m.

The image and the corresponding edges reconstructed from
0.6 m distance are presented in Fig. 16d–f. The confocal image
(Fig. 16d) shows two objects in focus (the mug and the camera)
at about the location of the reconstructed plane at 0.6 m. The con-
focal de-cluttered image using edge detection is shown in Fig. 16e.
In this image, only edges of these two objects are detected, while
edges of objects at other depth are removed. The compressed
30 � 26 pixels edge-image version is shown in Fig. 16f. Compared
to the compressed background cluttered image shown in Fig. 16c,
the features of the two objects in Fig. 16f better represent the
objects, while in Fig. 16c these features are largely masked by
the edges of the background.
Fig. 15. Estimation of object depth planes. The fraction of overlapping (collocating)
edge pixels between the edges of the center view image and the edges in 200
confocal images reconstructed at steps of 30 mm apart. The first maximum at 0.6 m
distance from the camera indicates the location of the OIs in front (mainly the
camera and the mug in Fig. 16a). The next maximum is around 3 m, which is the
distance to the background.
Figs. 16g–i present results for a confocal image at 3 m distance
from the camera, which is roughly the distance of most of the back-
ground objects. In the confocal image shown in Fig. 16g the two
objects in the foreground appear blurred. These objects disappear
in the edge image (Fig. 16h) and consequently in the compressed
version (Fig. 16i). It can be seen that in this case the computer
screens at the rear are somewhat more recognizable than in
Fig. 16c where they are cluttered at the bottom by the foreground
objects.

5. Discussion

We propose confocal imaging to suppress the background clut-
ter that impedes the recognition of OIs, especially when presented
in the limited resolution and dynamic range typical of current or
anticipated visual prostheses. These problems are evident in simu-
lation images shown by others (e.g., Zhao et al., 2010). In a preli-
minary study, we found that a confocal de-cluttered image
enabled better recognition than a background cluttered image
when compressed similarly. We illustrated the feasibility of
obtaining confocal images via light-field cameras and the utility
of the light-field data they generate. We also propose that the sys-
tem could be active, where the user controls the parameters
applied at various instances. The active nature of the proposed sys-
tem is designed to benefit from the situational awareness of the
user in general and particularly in selecting the confocal plane to
be examined. The latter aspect has not been addressed in the cur-
rent paper experimentally but is an important component of the
proposed system.

For a variety of reasons, we used real objects in a recognition
task, rather than the more commonly used multiple choice tasks,
such as visual acuity, contrast sensitivity, or the discrimination
between a few objects. First we argue that crowding and possibly
masking by background clutter are applicable and relevant mostly
to natural object recognition in a natural environment, though
clearly letters can be crowded as can the direction of Gabor
patches. However, the nature of visual acuity, contrast sensitivity,
and object discrimination testing as performed with vision pros-
theses renders the stimuli free of the crowding effect (Humayun
et al., 2012; Nau, Bach, & Fisher, 2013; Zrenner et al., 2011), which
is the focus of our approach and proposed solution. Second, we
argue that multiple choice testing, while a perfectly good method
for measuring the threshold performance of the human or animal
visual systems, is not sufficient to prove that prosthetic vision
can deliver object recognition. Humans are excellent at pattern dis-
crimination, and thus can learn to discriminate multiple choice tar-
gets without being able to recognize them. The ability to
discriminate contrast or even orientation of Gabor patches with a
prosthetic vision system does not assure an ability to transfer that
capability to visual perception of objects. Observers can learn to
use sounds to discriminate spatial patterns coded in some way.
Yet there is little confidence that such performance will lead to
auditory recognition of complex visual objects (not withstanding
the claims for auditory prosthetics, Ward & Meijer, 2010). We
argue that object recognition testing (not multiple choice testing
of object discrimination) is crucial to evaluation of prosthetic
vision. Many results demonstrated with prosthetic vision systems,
especially mobility related tests, clearly show the user scanning
the narrow camera field of view back and forth using head move-
ments across high contrast markers (Cooke, 2006; Mcnamara,
2007; Neve, 2011). This operational mode is similar to the opera-
tion of radar. The radar indeed functions very well in detecting
small targets in empty non-cluttered scene, such as the sky or
the sea, but is not useful in the terrestrial environment. Thus we
believe that the problem of clutter will be a significant impediment
to the use of these devices for mobility. More relevant to our dis-



Fig. 16. Results of automatic OI depth plane selection with confocal de-cluttering using a light-field setup. Top row (a–c) shows the center view image, together with the edge
image and its resolution-compressed version. Middle row (d–f) shows the same images for the confocal image reconstructed at the 0.6 m distance identified by the detection
algorithm. The bottom row (g–i) shows the same results for reconstruction at the other local peak distance of 3 m.
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cussion, with the use of scanning, observers can learn to elicit spe-
cific response patterns in multiple choice situations that they can
discriminate (Bionic Vision Australia, 2014; Second Sight Europe,
2013). However, such performance is not likely to be generalized
to the recognition of patterns not previously learned.

Our results may appear to suggest that the resolution needed
for object recognition at the 50% correct level, even with our pro-
posed confocal imaging, is much higher than what is achievable
with current prostheses, and even higher than the anticipated res-
olution of the next few generations of such systems. It seems that a
resolution of 3,000–5,000 electrodes may be needed. This estimate
may be overly pessimistic, as we used static images in our testing.
Most current and anticipated visual prosthetic devices use video
motion imaging (although the frame rate is usually at 10 frames
per second or lower). With live video, not only motion imaging is
provided but performance can be much improved. The small vari-
ation in the input due to electronic noise and to slight jitter in cam-
era position due to head tremor and bobbing result in slightly
different images being acquired and processed at each frame, even
when examining a static object while sitting (Peli & Garcia-Perez,
2003). At the low resolutions and dynamic ranges we deal with
here, that effect may result in temporal averaging of the signal that
filters away some of the noise and pulls out the consistent visual
signal. This is an effect similar to stochastic resonance (Collins,
Imhoff, & Grigg, 1996). Improvement in resolution with image jit-
ter was recently demonstrated for patients with AMD (Watson
et al., 2012) and was simulated for bipolar (3 level) visual edge
detection (Peli, 2002). Bipolar edges can be implemented if the
dynamic range of visual prostheses is improved beyond the current
1 bit level. Super-resolution benefits were also suggested using
dynamic halftones (Mulligan, Ahumada, & Jr., 1992). Many years
ago, when computer displays had only 2 bits of gray scale, we dem-
onstrated that quartertone coding can provide a substantial resolu-
tion benefit over binary imaging (Goldstein, Peli, & Wooledge,
1987). We noted during our object recognition trials that when
subjects failed to recognize objects they frequently rotated and
shifted their head as if trying to generate different viewpoints or
motion parallax, intuitively attempting to separate object from
background. This was unhelpful in our experimental setting but
would likely improve performance if applied in a motion video sys-
tem. Thus, with video imaging the performance could be improved,
and may reach an acceptable level at a lower, more practical, pros-
thetic resolution.

It is interesting to consider our object recognition task results in
the context of threshold performance. The lateral separation
between the psychometric functions fitting the individual subjects’
data for both conditions (background cluttered and de-cluttered)
(Fig. S2 in supplement), as well as the cumulative performance of
all of the subjects (Fig. 8), diminishes as the threshold is increased.
This may be considered a limitation of our approach, as one cares
more about the impact of the confocal imaging at higher levels of
performance, which are more desirable than in lower levels of per-
formance. However, it is important to realize that even perfor-
mance in an object recognition task at a level of 50% correct
would be highly desirable for any current visual prosthesis. If
and when the performance level reaches as high as 90% correct,
diminishing effects of our proposed confocal imaging may not be
too much of a loss.

Although our preliminary experiment was sufficient to show the
significance of the background clutter effect on object recognition at
low resolution, further aspects should be considered in future work.
Here we used simple objects, yet recognition varied between sub-
jects, as some objects were difficult to recognize from just the basic
shape. For example, the cylindrical shape of the desk lamp (object
11) was easily recognized by subjects, but they could only identify
the partial shape and not the whole item. In addition, linguistic anal-
ysis of subjects’ responses was required to decide correct answers. A
more systematic methodology is required to create a dataset of



Fig. 17. Operating modes of active confocal imaging for visual prostheses (a) Confocal-extension mode. The user, trying to find an object, reaches and touches around the area
where the object is expected to be. The system first detects the tip of the finger or cane and sets the focal distance to a predefined distance in front of it. In this mode, users can
see farther than the arm or cane length, hence the designation confocal-extension, and we expect this extended search range to reduce the search time. (b) Obstacle avoidance
mode, to be used mainly when walking. The system displays only objects that enter the pre-selected distance range and will alert the user when such an object is detected
(moving from location A to B in the figure). The range included may be selected to be very narrow or wider. This mode calls attention to obstacles or hazards that are missed
or not reachable by the cane. When an obstacle is detected the user may execute an avoidance maneuver based on the ‘‘visual’’ information displayed.
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images that can be used even more reliably in such studies. The use
of light-field imaging may support the use of such a dataset by
numerous groups testing different prostheses, as it contains the full
3D information and thus may be used in video and in conjunction
with the head movement and other depth cues.

As shown in Figs. 6 and 7, and in Fig 16e and f, the diagonal edge
from the ground plane (desk edge, in this case) clutters the OIs in
both background cluttered and de-cluttered conditions. Even if the
confocal image captures only narrow depth and the focal distance
is set on the OI accurately, the ground plane around the focal dis-
tance is also captured in focus and it is not removed by the current
de-cluttering method. Frequently, a shadow of the object projected
on the ground plane may have enough contrast and sharpness to
be maintained. A de-cluttering process that detects and removes
the ground plane may further improve the performance of the
system.

Light-field cameras are already on the market from Lytro and
Raytrix. Pelican Imaging (Mountain View, CA) (Venkataraman,
Jabbi, & Mullis, 2011) and Toshiba (Tokyo, Japan) (Kamiguri,
2012) are developing modules for smart phones. These modules
will be easily adaptable for visual prosthetic vision use and are
expected to be inexpensive. In future work, a light-field camera
will have to be used in video mode. An inexpensive commercial
light-field camera (Lytro) exists but is not suitable for visual pros-
thesis applications. The field of view in Lytro can be adjusted from
5� to 40�. However, the confocal performance (DOF) at the wide
field of view setting is too broad to suppress background clutter
(Min, Kim, & Lee, 2005). The optimal field of view of the Lytro cam-
era is 8�, where it can generate a maximum of 7 confocal images at
depth planes of 10, 25, 50, 100, 200, 600, and 1100 cm (Maiello,
2013), sufficient DOF ranges for our application but insufficient
visual field. At wider field of view settings the confocal depth steps
are too sparse to suppress clutter in other planes. The other com-
mercial light-field camera (Raytrix) can be customized by optimiz-
ing the lens array design for confocal imaging of the wide-field
light-field. It can operate at video rate and have a narrower DOF,
but it is much more expensive with the customization option.
Yet, it can support evaluation of the feasibility and the utility of
such a system.

An active confocal imaging system offers many possibilities for
modes of operation in future prostheses. Obvious candidates
include a free-search mode (Animation 4 in the online supplement),
which would be especially useful for orientation. A controller
mounted on the handle of a long cane could be used to isolate
and then zoom in on one of several objects selected automatically
from the image obtained by the head-mounted camera. Another
mode, confocal-extension mode (Fig. 17a), may be useful for
finding objects slightly beyond the reach of the arm or cane. The
confocal depth would be set to a narrow band, and the presented
de-cluttered view would be centered laterally based on the
detected location of the user’s searching hand or the tip of the long
cane. Further, in an obstacle-avoidance mode (Fig. 17b), objects in
the oncoming path could be detected when reaching a preset
distance from the user and presented visually, together with an
audible or haptic alert, giving sufficient warning and providing
for visually guided avoidance maneuvers. This mode may be
especially useful for elevated obstacles that the long cane cannot
detect, and as an early warning of pedestrian traffic (Pundlik,
Tomasi, & Luo, 2014). Active vision, where the user selects the
mode of operation and interacts with the environment through
the prosthesis settings, is our preference, in contrast to other
computer-vision based approaches. Our approach counts on the
user’s knowledge of the environment and awareness of what he
wishes to achieve, rather than on a need for the system to be able
to guess it.
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Figure S1. Dataset of objects for subject test (conventional wide DOF on the left and confocal 

narrow DOF images on the right ). Numbers indicate the object number mentioned in the paper. 
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Figure S2. Object recognition rate for individual subjects. Data for each resolution level are fitted 

with a Weibull function for each condition.  
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Figure S3 shows the relative difficulty of each object in the dataset compared with the reference object 

(object 1). We use log odds ratios instead of odds ratios to intuitively identify easier and more difficult 

objects to be recognized. For example, the relative difficulty of the object 6 is 0.18, which means that 

object 6 is about 5 times easier than the reference object. The relative difficulty of object 19 is 5.0, 

opposite the case for object 6, which means that it is 5 times more difficult to be recognized. However, 

the difference cannot be shown intuitively if we plot it without the conversion to log units. 

Because object 1 was a relatively difficult object to recognize, with unclosed edge lines and 

clutter of letters, the difficulties of objects in dataset were mostly lower than the reference. For example, 

object 3 is the easiest object to recognize, with a clear outline, as shown in the compressed image in Fig. 

5. However, objects 11 and 19 were difficult for subjects to recognize. In the case of object 11, subjects 

could not identify it as a lamp because of its unusual shape, although they could easily describe its 

cylindrical shape. For object 19, the nozzle of the spray can was mainly ignored by subjects, and they 

usually identified it as a bottle or a can because they thought the nozzle was part of the background and 

noise in the edge detection. Although this analysis is not sufficient with the small sample to categorize the 

 
Figure S3. Relative difficulty of recognizing objects in the dataset compared with object 1. With the 

recognition difficulty of object 1 set as 0 for reference, relative difficulties of other objects compared 

with object 1 are analyzed by the binary logistic regression model and represented here by log odds 

ratio. Error bars are 95% confidence intervals derived from the standard errors of the logistic 

regression coefficients. Significance marks * and ** show α < 0.05 and α < 0.01, respectively. 

Because the reference object, selected arbitrarily, is relatively difficult to recognize, difficulties of 

most objects are negative (easier). 
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dataset, and generating a final data set was not the purpose of this experiment, at least this result shows 

that difficulties are moderately balanced. 
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