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Contrast in complex images 
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The physical contrast of simple images such as sinusoidal gratings or a single patch of light on a uniform background 
is well defined and agrees with the perceived contrast, but this is not so for complex images. Most definitions assign 
a single contrast value to the whole image, but perceived contrast may vary greatly across the image. Human 
contrast sensitivity is a function of spatial frequency; therefore the spatial frequency content of an image should be 
considered in the definition of contras,t. In this paper a definition of local band-limited contrast in images is 
proposed that assigns a contrast value to every point in the image as a function of the spatial frequency band. For 
each frequency band, the contrast is defined as the ratio of the bandpass-filtered image at that frequency to the low­
pass image filtered to an octave below the same frequency (local luminance mean). This definition raises important 
implications regarding the perception of contrast in comp~ex images and is helpful in understanding the effects of 
image-processing algorithms on the perceived contrast. A pyramidal image-contrast structure based on this 
definition is useful in simulating nonlinear, threshold characteristics of spatial vision in both normal observers and 
the visually impaired. · 

INTRODUCTION 

Apparent or perceived contrast is a basic perceptual attri­
bute of an image. Many techniques of contrast manipula­
tion and modification have been developed within the field 
of digital image processing. The study of contrast sensitiv­
ity has dominated visual perception research in the past two 
decades. However, the measurement and evaluation of con­
trast and contrast changes in arbitrary images are not 
uniquely defined in the literature. In this paper I propose a 
definition of local band-limited contrast in complex images 
that is closely related to the common definition of contrast in 
simple pattern tests. The purpose of this new definition is 
better to link measured physical contrast with visual con­
trast perception. This definition provides new insights into 
the perception of supra threshold contrast in complex images 
and permits better simulations of the effects of the threshold 
nonlinear nature of contrast sensitivity on the appearance of 
images. 

Definitions of Contrast in Simple Patterns 
Two definitions have been commonly used for measuring the 
contrast of test targets. The contrast C of a periodic pattern 
such as a sinusoidal grating is measured with the Michelson 
formula1 

(1) 

where Lmax and Lmin are the maximum and minimum lumi­
nance values, respectively, in the gratings. The Weber frac­
tion pefinition of contrast [Eq. (2) below] is used to measure 
the local contrast of a single target of uniform luminance 
seen against a uniform background: 

~ 
C=­

L' 
(2) 

where~ is the increment or decrement in the target lumi­
nance from the uniform background luminance L. One usu­
ally assumes a large background with a small test target, in 
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which case the average luminance will be close to the back 
ground luminance. If there are many targets, or if there · 
repetitive target as in the case of a grating stimulus, 
assumptions do not hold. The processing of images in 
visual system is believed to be neither periodic nor 
therefore the representation of contrast in images should 
quasi-local as well. 

The difference between the two definitions becomes 
parent when the Michelson contrast is expressed sinllilear{J·tff: 
the Weber contrast: 

~ 
C= L+~' 

where ~ = (Lmax - Lmin)/2 and L = Lmin· These 
measures of contrast do not coincide or even share a 
range of values. The Michelson contrast value ranges 
0 to + 1.0, whereas the Weber contrast value ranges 
-1.0 to +co. Other definitions of contrast that share 
problems [for example, C = 2~/(2L + M)] have 
presented by Westheimer.2 However, all the 
represent the contrast as a dimensionless ratio of 
change to mean background luminance. 

Previous Definitions of Contrast in Images 
Because of the difficulties in defining contrast in d 
many definitions of contrast in a complex scene foun 
literature are restricted to the assessment of 
changes in the same image displayed in two . by 
One such definition of contrast change was give; 
burg. 3 For an image spanning the full range 0 

gray levels (i.e., 0-255 gray levels), the contra~t was 
as 100% but when the same image was linear Y 

' 7) the to span only half of the range (i.e., 0-12 ' t 
reduced to 50% With this definition of con trash 

. . t d t us, 
mean luminance decreases with contras an ' hould 
some of the other definitions, the contras\ 

8 
the 

unchanged by compression. More com~on ihe 
change of images was evaluated by usmg 

© 1990 Optical Society of America 



[Eq. (1)]. Image contrast was changed by linear 
bile the average luminance was held constant. 4 

wroach appears to assess properly the relative con­
:~ge between two presentations of the same image 

with this are addressed below). 
measurement of contrast using the Michelson 

is not appropriate because one or two points of 
brightness or darkness can determine the contrast 

image. For example, if a single bright highlight 
.... n,tl.., ....... ~J dark shadow point is added to a fairly low­

iiilage, the image Michelson contrast increases dra-
but the perceived contrast may be decreased. For 
reason, comparison of contrast in two different 

such as two faces, may be affected largely by inciden­
.... n~en,;c:;:o, such as reflections from the cornea or from a 

birthmark. 
the effects of masking5•6 by using two different 

11un1eriJmpose~a to create an intensity-mixed image, 
intensity in percent of each image was used6 

of contrast. However, even this measure cannot be 
the two superimposed images are band limited in 
t bands of spatial frequencies.6•7 

way to define the contrast in an image so that 
of two different images can be compared is to 

the root-mean-square (rms) contrast.8•9 The rms is 

(4a) 

is a normalized gray-level value such that 0 ::5 Xi ::5 1 
the mean normalized gray level: 

(4b) 

this definition, images of different human faces have 
contrast if their rms contrast is equal. 9 The rms 

does not depend on spatial frequency content of the 
the spatial distribution of contrast in the image. 
and Banton,10 working with fa~e images, recog-
need to define contrast locally in the images. 

a local, low-contrast feature by arbitrarily 
a local mean luminance along the chin line rela­
background and a local high-contrast feature by 
a mean luminance of the forehead and the dark 
the forehead. 

of. contrast of complex scenes at different spatial 
In the context of image processing and percep-

th ~xplicitly by Hess et al.U Contrast was 
e Founer domain as 

-~ DC ' (5) 

v) is the amplitude of the Fourier transform of 
c~ ~~ v are the horizontal and vertical spatial 

r Inates, respectively, and DC is the zero-fre­
,_~Un~~un~<>n+ This definition was applied globally to 

in age as well as to one-quarter or one-sixteenth 
nonoverlapping windows. 
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Local Contrast Definitions 
The local nature of contrast changes across an image and 
spatial frequency content are related and should be consid­
ered together. This is done implicitly when the contrast of a 
laser speckle pattern is defined as a local rms contrast.12 In 
this approach, the same definition used in Eqs. ( 4) over the 
whole image is applied locally to a small subimage of the . 
speckle pattern. Thus for each, possibly overlapping, sub­
image a local rms contrast is defined, which represents the 
contrast in the spatial frequency band corresponding to the 
speckle spatial period. 

Watson et al. 13 defined a contrast at each point for their 
test results, which were composed of a sinusoidal grating 
patch with a two-dimensional Gaussian envelope. A target 
was described generally as 

I(x, y) = /0 [1 + C(x, y)], (6) 

where C(x, y) is the contrast at each point and Io is the 
background luminance. For the targets used, which were 
band limited, this definition of contrast implicitly addresses 
the spatial frequency context and explicitly assigns a con­
trast value to every point in the image. In this scheme, 
however, the background luminance was constant, and only 
the peak contrast value for each pattern was used. 

Badcock14 defined measures of local contrast for his com­
plex grating pattern, composed of first and third harmonics. 
These ad hoc measures were based on observers' suggestions 
and do not apply to any generalization for other types of 
pattern. Hess and Pointer15 adapted the same definitions, 
but they calculated the contrast only around the peaks of the 
first harmonic and not around the troughs, thus ignoring the 
effect of the local luminance mean on the contrast of the 
higher harmonic. This effect is the central issue of the 
discussion here. 

NEW DEFINITION: LOCAL BAND-LIMITED 
CONTRAST 

To avoid many of the problems of other definitions of con­
trast as reviewed above, the new definition proposed here 
addresses several issues together. Since human contrast 
sensitivity is highly dependent on spatial frequency, espe­
cially at threshold, contrast for each spatial frequency band 
is calculated separately. The contrast at each point in the 
image is calculated separately to address the variation of 
contrast across the image. Thus we term the calculated 
contrast local band-limited contrast. This local band-limit-

. ed contrast corresponds to the quasi-local processing in the 
visual system. The most important aspect of the local band­
limited contrast16 definition proposed here is that the level 
of the local luminance mean should be considered in calcu­
lating the contrast at every point. 
· To define local band-limited contrast for a complex image, 
we will first obtain a band-limited version of the image in the 
frequency domain A(u, v). This can be done by using a 
radically symmetric, band-pass filter G(r). The bandpass 
profile should approximate the Gaussian envelope of the 
Gabor function in the frequency domain. It is appropriate 
to select sections of 1-octave bandwidth, because they simu­
late the bandwidth of cortical simple cells, 17 produce an 
efficient image code, 18 and contain roughly equal amounts of 
energy in images of natural scenes.19 Thus, in the frequency 



2034 J. Opt. Soc. Am. A/Vol. 7, No. 10/0ctober 1990 

domain, the band-limited image can be represented in the 
following way: 

A(u, v) = A(r, 0) = F(r, O)G(r), (7) 

where u and v are the respective horizontal and vertical 
spatial frequency coordinates and r and 0 represent the re­
spective polar spatial frequency coordinates: r = ~ 
and 0 = tan-1(u/v), and F(r, 0) is the Fourier transform of the 
image f(x, y). 

In the space domain the filtered image a(x, y) can be 
represented similarly, that is, as 

a(x, y) = f(x, y) * g(x, y), (8) 

where * represents the convolution operator and g(x, y) is 
the inverse Fourier transform of the band-pass filter trans­
form G(r). We can also define, for every bandpass-filtered 
image, a(x, y), the corresponding local luminance mean im­
age, l(x, y), which is a low-pass-filtered version of the image 
containing all energy below the band. The contrast at the 
band of spatial frequencies can be represented as a two­
dimensional array c(x, y): 

a(x, y) 
c(x, y) = l(x, y)' (9) 

where l(x, y) > 0. This definition provides a local contrast 
measure for every band that depends not only on the local 
energy at that band but also on the local background lumi­
nance as it varies from place to place in the image. See 
Appendix A for details of implementation of the contrast 
pyramid. 

IMPLICATIONS OF THE CONTRAST 
DEFINITION 

The contrast at a spatial frequency or a band of spatial 
frequencies is usually considered to be dependent only on 
the local amplitude at that frequency. The contrast in Eq. 
(9) depends also on the amplitude at lower spatial frequen­
cies. The effect of this difference can be easily appreciated 
with a one-dimensional, two-frequency pattern (Fig. 1): 

f(x, y) = 10(1 + a 1 cos wx + a2 cos Bwx), (10) 

where Io is the mean luminance and a1/ 0 and a2/ 0 are the 
amplitude of the first and eighth harmonics, respectively. 

Although the amplitude of the eighth harmonic is con­
stant across the image, the apparent contrast is higher near 

Fig. 1. Compound grating image as described in Eq. (10). The 
apparent contrast of the high-frequency component changes across 
the image although the amplitude is fixed. 

Fig. 2. Co~p~rison betwee1_1 bandp~ss amplitude image (left) and 
local band-limited contrast Image (nght) for two spatial frequen­
cies, 16 (top) and 32 (bottom) cycles per picture. Note the relative 
increase of contrast around the eyes and over dark areas in the 
original image (at left in Fig. 3 below). 

the troughs of the first harmonic than near the peaks, 88 
predicted by Eq. (9). This observation was recently verified 
psychophysically by Thomas. 20 The contrast of the eighth 
harmonic c8 may vary in the range 

a2 a2 
--::5cs::5--. 
1 + a1 1- a 1 

(11) 

For low-contrast patterns (i.e., a 1 « 1) the contrast varia· 
tion across the pattern is reduced, and the contrast cs may be 
safely ~pproximated by a2• Thus the analysis of the results 
of threshold experiments will not be significantly altered by 
this definition of contrast in most cases. Only for high· 
contrast images with contrast levels of more than 0.3 sho~ 
the analysis consider these local variations and their role 11 

perception. Such contrast levels are commonly encoUD· 
tered in everyday images. 

Many investigators have evaluated the con~rast ofandf~ 
images and other scenes at various bands by stmply. b 
pass filtering the image and displaying the band un~ 
added to an arbitrarily selected DC level, the mean 1U: 
nance of the image, or the midrange value. However •. as db­
be seen from Fig. 2, this will result in contrast that ~ 8 

stantially different from the one calculated by Eq. ~ 
particular, the contrast at high-frequency bands 
much higher over dark areas of the image. In face 
this frequently implies that the contrast at ~,.;..,.hn-sv .. •--; 
frequency bands is higher around the eyes and t e 
than the corresponding amplitudes of the d 
image (Fig. 2). Details that are subthreshold and thUS 
undetected in the bandpass-filtered image an tuallY 

d h I t . 21 maY ac sume to ave no re evance to percep Ion ess, 
suprathreshold in the image, add to image sharPn 
aid in recognition. The effect of this on the sitioll 
the image may be simulated by adding in sup~~fode 
various contrast bands rather than the amP 1 u 
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'fhe resultant simulated perceived image (Fig. 3) is much 
harper, has higher contrast, and enhances those details that 

s cur against darker backgrounds. The details of the filters 
oc ed in the generation of the images in Fig. 2 and the recon­
uts uction in Fig. 3 are given in Appendix A. 
s r 1· f . I . Linear sea mg o an Image gray sea e, a common Image-

hancement technique, is frequently used to modify images 
en study the effect of contrast. 5•9•10 It is usually assumed 
t~at linear rescaling will change the contrast of all frequen­
t. sin the same way. Indeed, the amplitudes of all frequen­
c~e s will be modified linearly by the same amount, but the 
clentrast as defined by Eq. (9) will change differently for 
~~fferent spatial frequencies. For example, if in Eq. (10) we 

1 
ultiply a1 and a2 by k, the new contrast for the first har­

:onic will be ka1, but the contrast of the eighth harmonic 
will span a new range: 

kaz < < ka2 
~-Cs-1-kal· (12) 

This effect is illustrated in Fig. 4. Each of the two images 
the right has two sinusoidal components of the same 

unl>lit1LI<1e with the higher component of equal spatial fre­
on both images. The images at the left represent 

linear rescaling of the two images at the right but 
in a noticeable difference in the apparent contrast of 

higher-frequency components in the two images. Thus 
rescaling of gray levels actually increases the contrast 
spatial frequencies more over dark areas than it does 

the same spatial frequency over light areas, and both are 
differently from the amount of change in the con­

of low spatial frequencies. 
scaling or polarity inversion of the display is 
used for image enhancement. 22 The fact that 

a process results in enhancement of details is usually 
to the nonlinearity of the display. However, even 

a linear display, an improvement in details may be 
with such processing, while at the same time the 
of other details is reduced. These results are clear­

~.~Derstfmd.abJle within the framework of the contrast defi:-
proposed here. Reversing the polarity of the display 

change the magnitude of the local high-frequency 
Contrast, on the other hand, will be increased 

translt-erJred from higher to lower local luminance 
will be lower for areas transferred from low to high 
mean. 
the polarity of text from black on white to white 

b of th.e perceived contrast image. This image 
of thy a~d~ng the local band-limited contrast images 

e ongmal bandpass-filtered images (left). 
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Fig. 4. Illustration of the different effects of linear rescaling on 
patterns of different spatial frequency composition. The com­
pound gratings at the right were linearly scaled equally (2X), result­
ing in their respective gratings on the left. The amplitudes of the 
two sinusoidal components in each image pair are equal, and the 
high-frequency component is of the same period in all images. Note 
the relative increase in contrast of this component in the lower-left­
hand image compared with the upper-left-hand image. 

on black has little effect on normal reading. Legge et al. 23 

have shown that some low-vision observers read as much as 
50% faster with reversed contrast text. These effects, which 
have been known clinically for many years, are usually at­
tributed to abnormal light scatter in eyes with cloudy media. 
Part of the effect may be explained by the change in contrast 
at the critical band of frequencies that occurs with change in 
polarity. The contrast at a 1-octave-wide band of spatial 
frequencies, extending upward from the fundamental fre­
quency of the letters, has been shown to contain sufficient 
information for fast reading. The contrast of details at this 
band will change substantially with a change of polarity 
from black-on-white to white-on-black text, according to our 
definition. Thus a patient's reading performance that de­
clines with a decrease in contrast at high contrast levels will 
improve with the reversal of text polarity irrespective of the 
nature of the patient's disability. This indeed appears to be 
true for the two cases reported by Rubin and Legge. 24 Since 
for many low-vision patients performance becomes depen­
dent on contrast only at fairly low contrast levels, this effect 
is apparent only with a small portion of the population. 
Pelli25 analyzed similarly the contrast of lines of text in the 
two polarities on a video display. His patterns, however, 
span different nonoverlapping luminance ranges and thus 
had different contrasts globally (defined by Michelson con­
trast) as well as locally. Only this global difference was 
considered in his case. 

APPLICATION: SIMULATIONS OF THE 
APPEARANCE OF IMAGES 

In this section two applications of the pyramidal image con­
trast structure described in Appendix A are illustrated. 
This type of processing enables us to implement the nonlin-
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ear response of the visual system locally. This application 
was not possible until now. 

The Fourier analysis of images in the context of image 
perception has frequently been interpreted to imply that the 
contrast sensitivity function measured at various spatial fre­
quencies can be implemented as a modulation transfer func­
tion of the system in the Fourier domain for filtration of 
images. 3•26- 28 In most cases, such applications were limited 
to increasing or decreasing the amplitudes at various spatial 

frequencies without explicit reference to the possible int 
actions among amplitudes at different frequencies. Wher. 
applied to the simulation of appearances of images to en 
servers with normaP or abnormai28 vision, this linear Pro ob. 
ignores the highly nonlinear characteristics of the vi cess 
system. Despite large differences in contrast sensitt~al 
thresholds for different frequencies at different eccent ~~t.y 
ties, appearances of superthreshold images are constan~lCl­
almost constant. 29

•
30 Hess et al. 11 included this nonline: 

Fig. 5. Simulation of the ~ppearance of a face image (spanning 4 deg of visual angle) to a low-vision patient whose contrast sensitivitY 
is illustrated in Fig. 6. Top left, the original image; top right, the simulated appearance of the same image to the patient. The 
four images represent processing at different spatial frequencies on the pyramid. The far-left-hand image in each row is the 1...-··r1"'"'~w image obtained from the original image. The second column shows the corresponding low-pass-filtered version for the same sea e, 
energy below the band represented in the first column, or the local luminance mean. The third column represents the th 
Contrast arrays are bipolar, and a DC level of 128 has been added arbitrarily to present those arrays as images. Images in the four 
the far-right-hand side represent the thresholded, bandpass-filtered images. For each image in the third column, each point was 
the threshold value illustrated in Fig. 6 for the corresponding spatial frequency. If the contrast of the image at that point is 
the corresponding point from the far-left image is reproduced in the far-right column. If the contrast at a certain point is beloW Jl}Jllinl 
corresponding point is set to zero (gray) in the far-right image. The simulated appearance image (top right) is generated by su 
images in the far-right column. Actual processing included two more rows at 2 and 32 cycles per picture (not shown). 

I ~ 
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Fig. 6. Contrast detection thresholds (dotted curve) of a low-vision 
patient with central scotoma owing to age-related maculopathy used 
in the simulation of Fig. 5. Contrast detection thresholds of 15 
normal observers are illustrated by the thick curve. The thin curve 
represents mean, radially averaged contrast spectra of five different 
faces. 

characteristic in their simulation of vision in amplyopes by 
applying the threshold in the Fourier domain. Such global 
processing is insufficient, as it does not address the local 
variability of contrast across the image. To improve their 
simulation, they have also applied the same process to sub­
images. 
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The pyramidal image contrast structure described in·Ap­
pendix A enables us to use nonlinear processing to simulate 
the appearance of images for normal- and low-vision observ­
ers point by point and for every spatial frequency in the 
image. An example of this process is illustrated in Fig. 5. 
The contrast sensitivity function of a patient with a central 
scotoma due to macular disease was measured, using 1-oc­
tave-bandwidth sinusoidal patches of grating in a two-di­
mensional Gaussian envelope. 31 The patient's contrast de­
tection thresholds used in the processing of Fig. 5 are illus­
trated, together with the mean response of 15 normal 
observers, in Fig. 6. Thus the final image in Fig. 5, top right, 
represents the appearance of the original image to this pa­
tient. The original image was processed with the stipulation 
that the face span 4 deg of visual angle. On this scale, this 
patient's visual loss had little effect on information at 4 
cycles per picture (top row of four images), a minimal effect 
on information at 8 cycles per picture (middle row), and a 
substantial effect on information at 16 cycles per picture 
(bottom row). Full processing included also the bands of 2 
and 32 cycles per picture (both not shown). This simulation 
differs from previous such simulations3•28 because supra­
threshold contrast features retain their contrast and are not 
washed out by the processing as with other techniques. 
Thus the simulated image maintains the full contrast ap­
pearance reported by patients with central visual loss and 
clear media and is not faded or washed away, as the appear­
ance of images seen through cataracts may be. 26 

The same pyramidal image contrast structure also enables 
us to simulate the appearance of images with a nonuniform 
retina. Using data on the contrast threshold at different 
spatial frequencies at different eccentricities on the retina,29 

we can simulate the appearance of images to the nonhomo­
geneous visual system by selecting a center of fixation repre­
senting the foveal position on the image and then comparing 
the local threshold at each spatial frequency and each eccen-

F~g. 7. Simulation of the appearance of an image to a normal observer including the nonuniform characteristic of the visual system. 
Snnulation is carried out with the assumption of fixation at the center of the image. The technique applied is similar to the one used for Fig. 5, 
etcept that for every point in the contrast image the distance from the center of fixation in degrees of visual angle was calculated, and the con­
trast detection threshold corresponding to spatial frequency and retinal eccentricity was used in thresholding the images. The image at the left 
represents processing when the scene was considered to span 32 deg of visual angle. The image at the right represents the same image 
fhocessed as if it spanned only 2 deg of visual angle. The most striking effect is the small variability across the visual field in both cases. Note 

at more heterogeneity is expressed over the image at the right (2 deg of visual angle). 
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tricity with the measured value. Images shown in Fig. 7 
illustrate the appearance of the same image when it spans 2 
and 32 deg of visual angle, respectively. The relatively small 
effect of the nonuniform retina in the appearance of both 
images is striking. The effect is much smaller than the 
effect previously simulated by Schwartz and colleagues, us­
ing cortical surface data32·33 or an arbitrarily selected non­
uniform function. 34 The same simulation may be expanded 
to represent the full visual field, as data for the lower spatial 
frequencies and the higher eccentricities were recently pub­
lished by Pointer and Hess. 35 

DISCUSSION 

The basic assumption of this study was that image contrasts 
should be expressed as the dimensionless ratio of the local 
amplitude and the local average luminance similarly to that 
expressed in the definition of Michelson contrast or Weber 
fraction. The use of such a ratio implies that the human 
sensitivity to amplitude of change in luminance varies with 
the adaptation level associated with the local average lumi­
nance. 36 This is known to be the case for threshold contrast 
sensitivity at all spatial frequencies at high luminance levels. 
For low frequencies ( <4 cycles/deg), the same relation is true 
for a large portion of the photopic range. 37 For the rest of 
the spatial frequencies and luminance ranges, the DeVries­
Rose law applies, representing only partial adaptation. 

Partial adaptation may be included in the present defini­
tion of contrast simply by reducing the effect of the local 
luminance mean on the high-frequency contrast to some 
degree. Such reduction may actually be necessary to avoid 
phase inversions in extreme cases. Low-pass-filtered ver­
sions of an image may, in extreme but possible images, con­
tain negative values, even if the image is defined as positive 
only. Such negative values indicate the existence of nega­
tive values of the filters. In the visual system such values 
exist and are referred to as areas of inhibition in the recep­
tive field or the filter's point-spread function. These nega­
tive values may result in an inversion of the contrast as 
defined here, an undesirable result. However, if partial 
adaptation is applied, it can be adjusted easily to reduce the 
magnitude of such discontinuities. 

The degree or level of local luminance adaptation in su­
prathreshold contrast sensitivity has, to our knowledge, not 
been determined. Experiments using a dichoptic presenta­
tion found that contrast matching at high-contrast levels 
indeed approximated contrast as defined by the ratio of 
amplitude to local luminance mean. 38 Although the meth­
odology used cannot be applied directly to normal viewing of 
an image, the ability to set the contrast for apparent match 
under such diverse conditions suggests that similar results 
may be obtained with monocular viewing of multiple targets 
over a variable local luminance mean. We are currently 
attempting to measure directly the level of local luminance 
adaptation within one image. 

Enhancement of images and de blurring in the visual sys­
tem have been discussed by various authors. Mechanisms 
such ~s lateral inhibition or the transfer function calculated 
from the contrast sensitivity function were used to explain 
these enhancement effects. Active enhancement using 
adaptive gain control in different spatial frequency channels 
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was proposed by Georgeson and Sullivan. 38 Enhance:rn 
or sharpening of the image reconstructed from contrast ra~~t 
er than amplitude components is proposed here as a lo · 
mechanism for enhancement of complex images but can:al 
explain the experimental results obtained with single sin ot 

. oidal targets. Thus it could be postulated that such lou~ 
enhancement occurs in addition to the reported glo~al 
sharpening. If such local enhancement does occur, it should 
be measurable. 

The same enhancement that occurs in the visual syste 
may be useful in image-processing algorithms. Indeed, t: 
enhancement capabilities of similar pyramids of contrast~ 
related images have been used in image-processing applic . 
tions. 39.4° In both, the pyramids were of ratios of low-pas a_ 
filtered versions of the image at different scales, and in bot~ 
cases the visual contrast sensitivity was cited as the motiva. 
tion. Toet et al. 39 used a ratio of 2-octave-spaced low-pass 
images to merge visual-optical and thermal images. Their 
contrast ratio was defined as 

li(x, y) 
ri(x, y) = z. ( ) = ci(x, y) + 1. 

~-1 x,y 
(13) 

They argued that the contrast-related bandpass-filtered im­
age version of the optical image is more appropriate to use 
since it more closely represents visually important features. 

The main difference between their definition and the one 
used here is that in their contrast there is no sign change to 
distinguish between objects that are darker or brighter than 
the background. The importance of this sign change in the 
visual system has been reported by Shapley and Enroth­
Cugell.41 

Schenker et al.40 used a similar ratio of two low-pass fil­
tered images and compressed the output by a logarithmic 
transformation in an algorithm used to detect image edge 
structure. In our notation it can be written as 

li(x, y) 
I0,(x,y) =In l ( )' 

i-1 x,y 
(14) 

Logarithmic transformation restores the sign change and 
also results in relative enhancement of negative contrast or 

· in increased sensitivity to decrements versus increments as 
found commonly in psychophysical experiments. 42 Hilsen· 
rath and Zeevi43 implemented a similar process of adapta· 
tion in one scale only for designing an adaptive, locally gain· 
controlled detector. -Such adaptation permits imaging over 
wider dynamic ranges than is possible with standard caJD· 
eras. 

Contrast measured by filtering as suggested here defin:. 
only incremental or decremental changes from l?cal bac ) 
ground. This is analogous to the symmetric ( cosme ph~ 
responses of mechanisms or cells in the visual system. 
other type of contrast may be defined as a transition 
low to high luminance, or vice versa, in a band-limited 
The latter may be viewed as the response of the 
ric (sine phase) mechanisms. A complete --~·"'"'·•v­

contrast in a complex image should include both of 
contrast representations. 44 Incorporation of these 
tions in a one-dimensional case, using oriented 
straightforward. 45 Complete two-dimensional 
is difficult owing to the lack of definition of Hilbert's 
form for the two-dimensional case. 46 
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~pENDIX A: PYRAMIDAL STRUCTURE 
{]SED IN ANALYSIS AND SIMULATIONS 

A pyramidal image transform was calculated in the frequen-
y domain. 47 For digital processing of images, it is con ve­

e ·ent to select center frequencies (in cycles per, picture) that 
111 e a power of 2 for each segment. Thus the image in the 
:equency domain may be represented as 

n-1 

p(u, v) = F(r, 0) = L0(r, 0) +I Ai(r, 0) + Hn(r, 0), (Al) 
i=1 

,here Lo and Hn represent the low and high residuals, re­
spectively. They contain the energy in the low and high 

:tfrf!()wenc:a' :::; after the various bandpass layers, Ai, have been 
~anlltrstc~t:~u from the image. The low residual is essential in 

application and therefore is maintained. The high re­
has little information, and in most applications it may 

discarded without any perceptual change in the image. 48 

Although the use of a Gaussian filter is attractive because 
the mathematical convenience in transformation from the 

IMouertcvto the spatial domain, this filter has several short­
To obtain an approximation to the shape of a 

and at the same time to satisfy the requirement of 
IIDilDetricl:UShape on a log frequency axis, together with the 
IOui.reiJneiJttthat the image must be able to be reconstructed 

the various segments by simple addition,48 we have 
cosine log filters (Fig. 8). A cosine log filter of (1-

frequency 

(b) 

center freq . 

Center Freq . 

4 
8 
16 

4 

8 
16 
sum 

100 

sum 

100 

of ~aussian (Gabor filters) with the cosine log 
allr\a) Filter bank of 1-octave-wide Gaussian filters 
th 1 ters. (b) Filter bank of 1-octave-wide cosine log 

the sy~ summation of all the filters adds to the unity. 
metry of the cosine log filters on a logarithmic 
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octave) bandwidth centered at frequency 2i cycles/picture is 
expressed as 

(A2) 

The small difference between these functions and the com­
monly used Gabor filters or derivatives of Gaussians is of 
little consequence for the concept described here and its 
potential applications. 

Thus Ai is obtained by multiplying the Fourier transform 
of the image with a torus-shaped dome filter described in Eq. 
(A2). The filtered image is transformed back to the space 
domain, where it can be represented as 

n-1 

f(x, y) = l0(x, y) +I ai(x, y) + hn(x, y). 
i= 1 

(A3) 

The residuall0 is calculated simply to maintain the ease of 
reconstruction with simple addition, but hn is not used in our 
model. For every ai(x, y), the corresponding Ux, y) is 

i-1 

li(x, y) = l0(x, y) +I aj(x, y), 
j = 1 

and ci(x, y) is calculated as in Eq. (9): 

ai(x, y) 
ci(x,y) = -[.( )' 

L x,y 
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