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Abstract

Background: The image formed by the eye’s optics is blurred by the ocular aberrations, specific to each eye. Recent studies
demonstrated that the eye is adapted to the level of blur produced by the high order aberrations (HOA). We examined
whether visual coding is also adapted to the orientation of the natural HOA of the eye.

Methods and Findings: Judgments of perceived blur were measured in 5 subjects in a psychophysical procedure inspired
by the ‘‘Classification Images’’ technique. Subjects were presented 500 pairs of images, artificially blurred with HOA from
100 real eyes (i.e. different orientations), with total blur level adjusted to match the subject’s natural blur. Subjects selected
the image that appeared best focused in each random pair, in a 6-choice ranked response. Images were presented through
Adaptive Optics correction of the subject’s aberrations. The images selected as best focused were identified as positive, the
other as negative responses. The highest classified positive responses correlated more with the subject’s Point Spread
Function, PSF, (r = 0.47 on average) than the negative (r = 0.34) and the difference was significant for all subjects (p,0.02).
Using the orientation of the best fitting ellipse of angularly averaged integrated PSF intensities (weighted by the subject’s
responses) we found that in 4 subjects the positive PSF response was close to the subject’s natural PSF orientation (within
21 degrees on average) whereas the negative PSF response was almost perpendicularly oriented to the natural PSF (at
76 degrees on average).

Conclusions: The Classification-Images inspired method is very powerful in identifying the internally coded blur of subjects.
The consistent bias of the Positive PSFs towards the natural PSF in most subjects indicates that the internal code of blur
appears rather specific to each subject’s high order aberrations and reveals that the calibration mechanisms for normalizing
blur also operate using orientation cues.
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Introduction

The perception of blur can be altered by exposure to blur

introduced optically [1] or by filtering images [2], even following

brief exposures to altered blur. There is solid evidence that after

adapting to a sharpened image, a focused image appears blurry,

and conversely, that after adapting to a blurred image a focused

image appears sharpened [2,3]. These short-term after effects

reflect the visual system’s adaptability, within individual observers,

to changes in the spatial properties of natural images. The image

formed by the eye’s optics is inherently blurred by aberrations

(low- and high order aberrations (HOA)) specific to each

individual’s eyes. Low order aberrations are normally corrected

with spectacles or contact lenses, while customized refractive

corrections aim at compensating also for HOA. On the other

hand, certain refractive surgery treatments induce significant

amounts of HOA [4,5], while optical aids such as progressive

spectacles produce significant amounts of astigmatism and field

distortion [6]. A clinically relevant question is whether the visual

system adapts to both correction and induction of ocular

aberrations. Recent studies reveal that the eye recalibrates quickly

to new patterns of astigmatism or HOA (induced or corrected)

[7,8], although whether these forms of adaptation have long-term

impact on visual performance is still under investigation [8–11].

Meridional differences (oblique effect) [12], arising from a neural

origin, have been observed on visual acuity and contrast sensitivity

[13–16], and they likely play role on neural adaptation. So far, it

appears that the internal code for blur is controlled by the overall

magnitude of the subject’s own aberration. The extent to which

the internal code for blur may be also biased by the orientation of

the aberrations pattern is debateable.

Several studies have attempted to determine what the world

might look like if we could see through the eyes of another.

Adaptive Optics (AO) is well-suited to addressing this question, as

it allows for the manipulation of the ocular optics to produce

identical retinal images in different observers. Using AO we have

gained evidence that observers appear to be adapted to the blur

produced by their own aberrations, as images blurred with similar
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magnitude of blur as the subject’s own appear as best focused

(unlike images blurred by lower or higher amounts of blur, which

appear oversharpened or blurred, respectively [17]. The prefer-

ence for the individual overall amount of blurred appears strong.

However, there is some evidence that the subject may also be

adapted to specific features of blur, i.e. orientation. In a recent

study [18], we showed that what a subject perceived as normal is

biased towards images blurred by their natural PSF as opposed

those with a 90u rotation of their PSF, in agreement with a

previous study showing that images blurred by the subject’s Point

Spread Function (PSF) were perceived as having better quality

than those blurred with the same PSF but at different orientations

[19]. Similarly, in a test where subjects were presented with pairs

of images randomly blurred by their own PSF or someone else’s

PSF (selected from a set of 10 other subjects, and scaled to match

the subject’s own overall blur level) there was some bias towards

the natural PSF, but it was weak (53621% vs. 51619%, on

average) [18]. While prior experiments point to some role of the

orientation of blur in the internal coding, they were not designed

to identify the internally coded PSF.

In this study we employed a psychophysical experimental

paradigm inspired by the Classification Image method. This

method was first proposed by Ahumada et al. [20,21] in audition

to extract relevant features for tone detection, and more than

20 years later was applied to vision by the same authors in the

study of vernier acuity tasks [22,23]. As typically employed, the

technique involves the addition of random noise to a stimulus

image so that all the information that can be potentially used by

a subject to perform a given task is randomly perturbed from

trial to trial. Subjects make a judgement about each stimulus,

e.g. whether or not a target is present. The added noises are

then averaged for each of the stimulus-response categories and

differenced according to whether the observer made a correct

or incorrect decision. These differenced sums of random noise

samples yield a profile, called the Classification Image, which

is assumed to describe how the observer weighted each pixel in

the stimulus to reach their trial-by-trial decisions. This technique

has been used extensively to study visual strategies in a variety of

visual tasks [24]: visual detection and discrimination [25–27],

pattern recognition [28], visual filtering [29], perceived contrast

of natural images [30] and adaptation to different correlated

noise textures [31]. In the current study, we used a variant of

the Classification Image paradigm where the variations (noise)

in the image were produced by convolution with different

oriented PSF while the analysis was based on the Classification

Image method (for weighting and averaging) in order to extract

the oriented PSF template that best matched the subject’s own

PSF.

Materials and Methods

Ethics Statement
All participants provided written informed consent. All

protocols met the tenets of the Declaration of Helsinki and had

been approved by the Consejo Superior de Investigaciones

Cientı́ficas (CSIC) Ethical Committee. The individual photo-

graphed, for the test images of the experiment, has given written

informed consent, as outlined in the PLOS consent form, to

publish his photograph.

Subjects
Five observers with prior experience in visual psychophysical

tasks participated in the experiments. All had normal vision

according to a clinical ophthalmological evaluation and were

emmetropes or corrected ametropes. Their refractive error

(without correction) was 21.8562.59 D on average. Subject S2

performed the measurements wearing her soft contact lenses.

Their natural Strehl Ratio (defined as the PSF maximum relative

to the diffraction-limited PSF maximum [32] varied from 0.040

to 0.1233. Figure 1 illustrates the normalized PSF of each

subject.

Figure 1. Normalized Point Spread Function (PSF) of the 5 subjects.
doi:10.1371/journal.pone.0070856.g001

Figure 2. Illustration of the psychophysical experimental sequence. Presentation of two pairs of blurred images out of a total of 500 pairs
followed with a response on the 6 buttons box.
doi:10.1371/journal.pone.0070856.g002

Natural Adaptation to Orientation of Aberrations
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Apparatus and Stimuli
Adaptive Optics (AO) allows controlling the blur level of the

retinal image, and it is therefore a powerful technique to directly

test neural adaptation to the subjects’ own aberrations pattern.

We used a custom-developed AO system to measure and fully

correct the aberrations of the subject, while viewing the stimuli. By

removing the natural aberrations of the eye, all observers were

exposed to identical aberration patterns and therefore any

difference in the visual response must be due to neural factors.

We then manipulated the retinal blur by projecting degraded

images with known HOAs.

The instrument has been described in detail in previous

publications [33,34]. Illumination comes from a Super Lumines-

cent Diode (SLD) coupled to an optical fiber (Superlum, Ireland)

emitting at 827 nm. The subject’s high order aberrations and

astigmatism were measured with a Hartmann-Shack wavefront

sensor (HASO, Imagine Eyes, France, 32632 lenslets) and

corrected by an electromagnetic deformable mirror (MIRAO,

Imagine Eyes, France, 52 actuators), while defocus was corrected

by a Badal optometer. Stimuli were projected on a 12616 inches

calibrated CRT Monitor, controlled by the ViSaGe psychophys-

ical platform (Cambridge Research System, UK). The system was

controlled using custom routines written in Visual C++ (Microsoft,

Visual Studio), which controlled the Hartman-Shack wavefront

sensor, the AO- closed loop correction of aberrations, the

motorized Badal optometer, and the pupil monitoring system,

and in Matlab (Mathworks, Natick, MA, USA) which controlled

the ViSaGe psychophysical platform.

Generation of the optical blur
Instead of generating the aberrations patterns with the AO-

Deformable Mirror (AO-DM) [19], we manipulated the retinal

blurred by projecting images blurred by convolution. The use of

convolved images (observed through fully corrected optics) reduces

technical complexity while still providing the intended image blur

on the retina in all subjects. Also to generate the different

Figure 3. Illustration of the PSF orientation analysis. (a) Subject’s PSF; (b) Sampled PSF Map in 72 angular sectors. The integrated intensity
values are normalized to 1; (c) Corresponding polar plot of the Sampled PSF Map (Orientation Plot); (d) The orientation of the PSF is given by the axis
of the fitting ellipse (where the angle represents the main axis of the ellipse and the line length the eccentricity e of the ellipse (e = 0.98). Data are for
S4).
doi:10.1371/journal.pone.0070856.g003

Figure 4. Illustration of the Classification Maps orientation analysis. (1) Construction of the Positive and Negative Classification Maps from
the total Classification Map, (2) considering absolute values, (3) Polar plot representation of Positive and Negative Orientation Classification Plots,
(4) main axis of the fitting ellipse and eccentricities (e = 0.88 for positive and 0.98 for negative). Example is shown for subject S4.
doi:10.1371/journal.pone.0070856.g004

Natural Adaptation to Orientation of Aberrations
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aberration patterns (in total 1000) with the AO-DM, we would

have needed to measure and generate dynamically the aberrations,

thus the SLD would have been switched on during all the

experiment (.3 hours). The 827-nm SLD wavelength is still

visible to the subject, and the spot, superimposed to the test image,

appears disturbing to the subject during performance of the

psychophysical experiment. Therefore, we considered the use of

convolution as the optimal solution in our experiment.

An image of a face (1.98-deg angular subtend, 4806480 pixels)

was blurred by convolution with the Point Spread Function (PSF)

[32] generated from 100 different wave aberrations obtained from

real eyes (including 4 out of the 5 subject’s wave aberrations

patterns) where tilts, astigmatism and defocus were set to zero (the

Zernike coefficients (HOA) that describe the aberrations of the 100

eyes are included as supporting information, Database Material

S1). To generate the simulated degraded images, the original

normalized Zernike coefficients of the 100 wave aberrations were

scaled by a factor such that the corresponding Strehl Ratio (SR)

was constant across all 100 PSFs, and matched the SR from the

subject under test. Multiplying all the Zernike coefficients by a

factor modifies the amount of blur while preserving the relative

shape of the PSF. Each subject was then presented with images

with the same overall blur level (within less than 2% deviation), but

different blur orientation. Five different series of 100 images were

generated, corresponding to the each of the 5 subjects participat-

ing in the experiment.

Procedure
The high order aberrations, astigmatism and defocus of the

subject were corrected, so the images were viewed under fully

corrected optics. The procedures for measuring and correcting the

subject’s aberrations are similar to those described in detail in

previous publications [33,34]. Experiments were performed using

a 5-mm artificial pupil, monocularly, and under natural viewing

conditions (no cyclopegia or pupil dilation). The subject’s pupil

was continuously monitored to ensure proper centration.

Subjects adjusted their best subjective focus using the Badal

optometer while looking at the Maltese cross on a minidisplay.

The subject’s astigmatism and high order aberrations were then

measured and corrected in AO-closed-loop. The correction was

typically achieved in 15 iterations and was deemed satisfactory

when the residual wavefront error was less than 0.15 mm RMS

(astigmatism and HOA). In this corrected state, the subjects were

asked to again adjust the focus with the Badal system. The

Figure 5. Example of the 10 top positively and negatively ranked PSFs for subject S4. The labels show the score and the parameters of the
fitted ellipse (axis, eccentricity).
doi:10.1371/journal.pone.0070856.g005

Figure 6. Subject’s natural PSF and Positive and Negative averaged PSFs. Subject’s natural PSF (first row), averaged PSFs of the 10 best
positive (middle row) and of the 10 best negative (last row) for each subject. The corresponding coefficients of correlation (r) between Subject’s
natural PSF and the Averaged Positive and Negative PSFs are shown in each panel.
doi:10.1371/journal.pone.0070856.g006

Natural Adaptation to Orientation of Aberrations
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psychophysical measurements were performed under static cor-

rection of aberrations and the residual wavefront error was

monitored (before and after each measurement) to ensure

appropriate maintenance of AO-correction. A new closed-loop

correction was applied if necessary (i.e. generally due to changes in

eye position). On average, the RMS error (astigmatism and HOA)

decreased from 0.50060.277 mm to 0.10560.021 mm, with an

average RMS error correction of 7668% (for 5-mm pupil

diameter). The RMS for HOA-only decreased from

0.25460.088 mm to 0.09660.026 mm (the average percentage of

HOA correction is 60612%, across all subjects).

In a first session, the aberrations of the participating subjects

were measured to estimate their natural Strehl Ratio (needed to

generate the set of images). The second session involved the

Classification Images-based experiment. Subjects were presented

sequentially with random pairs of images with similar overall blur

level (identical PSF SR but different HOA patterns) and asked to

judge which of the two images appeared better focused. The

subjects used a 6-button box to respond and ranked their response

with 6 choices according to their level of confidence in their

judgment (from 1 meaning a high certainty that the first image

presented was best-focused, and 6 meaning a high certainty that

the second image of the pair was best-focused, 2 or 5 meaning

moderate certainty, and 3 or 4 meaning low certainty for the first

or second image, respectively). Figure 2 presents the sequence of

the psychophysical experiment. Typically, the number of trials

used in the Classification Image technique varies from hundreds to

tens of thousands depending on the nature of the experiment. To

balance this parameter with the experiment’s duration, we used a

total of 1000 blurred images (500 pairs, all random) presented in

blocks of 50 pairs to the subject. In each pair, the images were

blurred by two different HOA patterns randomly selected from

among the 100 different patterns. The sequence of the psycho-

physical test consisted of: (1) 20 seconds adaptation to a gray field;

(2) Sequential presentation of 2 blurred images (1.5 s each); (3) Re-

adaptation to gray field (blank), during which the subject

responded. This sequence was repeated 10 times, with 50 pairs

of images presented in each run, and breaks in between runs.

Images blurred with the same HOA pattern were therefore

Figure 7. Correlations with subjects’ PSF. Upper row: Correlations of the averaged Positive or Negative PSFs with the subject’s PSF a) for the
highest ranked only and b) for all PSFs. Lower row: Correlations of the individual Positive or Negative PSFs with the subject’s PSF c) for the highest
ranked PSFs only and d) for all PSFs. The red crosses show the average of all the individual correlations of the 100 PSFs with the subject’s natural PSF
of the eye under test. Significant differences between Positive and Negative PSFs were found in all cases; * stands for significance at p,0.05;
** p,0.005 (t-test). Dashed lines and symbols correspond to the simulated ideal responses, based on correlations with the subject’s PSF. Positive
responses in blue, and negative responses in yellow.
doi:10.1371/journal.pone.0070856.g007
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presented 10 times during the experiment. The experimental

session lasted typically around 3 hours in total.

Data analysis
The image in each pair that was judged as better focused was

identified with a positive response, and the other with a negative

response. The subject’s PSF was compared with each PSF that

resulted in a positive or negative response individually. Alterna-

tively, the subject’s PSF was compared with the average of PSFs

resulting in positive or negative responses respectively. These

analyses allowed extracting the features (orientation in particular)

of the PSF set that best matched the subject’s internal best optical

blur code. The computations were carried considering either all

responses, or only the 10 highest scored Positive and Negative

PSFs

For the assumed optical quality metric (Strehl Ratio), all images

have identical optical degradation, and therefore a random

response would be consistent with natural spatial adaptation

unbiased by specific features of the natural PSF of the subject e.g.,

the orientation. On the other hand, a consistent bias of the Positive

PSFs towards the natural PSF would indicate that the internally

coded blur is driven by the specific features of the subject’s natural

aberrations. Furthermore, if adaptation is specific to the individual

aberration pattern (and not only to the overall level of blur) the

average Positive PSF should match more closely the natural

aberration of the subject than the Negative PSF. The analyses are

therefore carried in terms of: (1) correlation of the Positive and

Negative PSF (both individually and on average) with the natural

PSF of the subject; (2) Orientation of the Positive and Negative

PSF, in comparison with the orientation of the natural PSF.

Correlations of Positive and Negative PSFs with subject’s

natural PSF. For each subject, the Positive PSFs were weighted

with +10 (high certainty, corresponding to scores of 1 or 6), +5

(moderate certainty, corresponding to scores 2 or 5) and +1

(uncertain, corresponding to scores 3 or 4). The Negative PSFs (i.e.

the image not identified as positive from the pair) were given the

same weight than that given to the Positive PSF of the pair, but

with negative sign. This scale allowed giving a strong weight to

responses with high certainty. These weights were then added over

the 10 presentation instances for each test image, yielding a total

score that could range from +100 to 2100 (if consistently ranked

as positive or negative with the highest certainty). In addition, the

average Positive and Negative PSFs were calculated, by registering

the centers of mass of each individual PSF (an alternative analysis

using maximum intensity did not modify the results). These

calculations were performed either over the 10 highest positively

and negatively ranked (according to their total scores) PSFs or over

all 100 weighted PSFs. Pointwise spatial correlations between the

individual (or average) Positive/Negative PSFs, and the natural

PSFs were calculated, and the coefficients of correlation were used

to evaluate the similarity of the subject’s PSF to those identified as

positive or negative (both individually and averaged).

Figure 8. Subject’s PSF and Classification Maps. (1) Subjects’ natural PSF; (2) Subject’s Sampled PSF in angular sectors; (3) Corresponding PSF
Orientation Plot (along with the axis of the fitted ellipses and eccentricities) and (4) the Classification Maps obtained from the subject’s responses and
all the 100 PSFs. Correlations between the Classification Map and the subject’s Sampled PSF are shown in insets.
doi:10.1371/journal.pone.0070856.g008
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Analysis of PSF orientation: Sampled PSF Classification

Maps and Orientation Plots. The subject’s PSF and those

identified as negative or positive were compared in terms of their

orientation. To study orientations, the PSFs were sampled in 72

angular sectors (centered at the PSF center of mass, and 5-deg

angles, from 0 degree centered in the first section). The analysis of

PSF orientation is illustrated in Figure 3. The intensity of the PSF

at a given orientation (mid-angle in each sector) was calculated as

the integrated PSF intensity in each sector, and normalized to 1

(Fig. 3b), the values of the Sampled PSF plotted in polar plots

(Orientation Plots, Fig. 3c). The orientation of the PSF is given by

the main axis of the best fitting ellipse, with the length of the line

representing the eccentricity e of the ellipse ranging from 0 (circle)

to 1 (Fig. 3d).

PSF Classification Maps are built from the subject’s responses,

by averaging PSFs that were given the same score (1 or 6; 2 or 5; 3

or 4) and whether considered positive or negative. In these

averages, the PSFs were weighted by the factors corresponding to

the certainty (high/moderate/low) of the response (+10, +5, +1;

210, 25, 21 for positive and negative responses, respectively).

Classification Maps were used to extract the PSF that best

matched a subject’s natural PSF. describing how the subject

weighted each angular section of the Sampled PSF. Also, Positive

and Negative Classification Maps were computed separately, as

shown in Figure 4, from the Classification Map by separating the

positive and negative weights. Positive and Negative PSF

Classification Maps for each subject were represented in polar

plots (Orientation Classification Plots), and ellipses were fitted to

these. Classification Plots represent the average orientation

perceived as best or worst by the subject, respectively.

Correlations were performed between the subjects’ PSF

Orientation Plot and the Positive/Negative Orientation Classifi-

cation Plots and used to evaluate the similarity of the subject’s PSF

and the Classification Maps.

The analyses rely on two assumptions: (1) The subjects’ natural

PSFs show a certain degree of anisotropy in orientation; (2) The

100 PSFs used in the experiment sample all orientations. The

Orientation Plots of all PSFs of the sample revealed that 94% of

the fitting ellipse had a well defined orientation (eccentricity.0.6),

58% had a strong orientation (eccentricity.0.9) ranging from

4 degrees to 179 degrees and 24% of the ellipses had an

orientation of the long axis between 85 and 95 degrees) which

generated an averaged PSF (across all the 100 PSFs of the sample)

with a slight vertical orientation (eccentricity = 0.73, oriented at

85 degrees).

Correlation coefficients were used to quantify the similarity

between the subject’s PSF and Positive and Negative PSFs. We

evaluated the sensitivity of this metric by calculating correlation

coefficients of the subject PSFs with the individual PSFs of the

sample, and also from the average correlation coefficients of 50

pairs of randomly selected PSFs (repeated 5 times). The Corre-

lation coefficients between the subjects’ PSFs and the 100

individual PSFs ranged from 0.055 to 0.720, and were on average

for each subject: 0.46260.093 (S1), 0.40460.093 (S2),

0.46560.110 (S3), 0.39160.103 (S4), and 0.45260.086 (S5).

The coefficients of correlation of 50 pairs of randomly selected

PSFs from the sample were on average 0.44260.100 (S1),

0.42460.101 (S2), 0.43760.104 (S3), 0.48460.120 (S4) and

0.40860.097 (S5). These levels of correlations describe the

distribution of sample means and represent the level of correlation

that can be found by chance in this process.

Figure 9. Classification Orientation Plots from subjects’ responses. Positive (green) and Negative (red) Classification Orientation Plots, along
with subject’s natural PSF Orientation Plot (blue) for all subjects and the representation of the orientation of the fitting ellipses for the subject’s PSF
(blue), the positive internally coded PSF (green) and the negative internally coded PSF (dashed-red). The angle (Q) for each fitted ellipse is depicted in
the corresponding graph.
doi:10.1371/journal.pone.0070856.g009
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Comparison with simulated responses. On the assump-

tion that subjects would choose the image blurred with a more self-

correlated PSF, we simulated the ideal responses of each observer to

the task. The simulated observers gave positive responses for the

image of each trial pair that was blurred with a PSF with a higher

correlation with that of the observer’s PSF. Similarly to the real

experiment, we ‘‘presented’’ randomly 500 pairs of images, and the

simulated responses were classified (and ranked) according to the

correlation between the subject’s PSF and the stimulus PSFs. A high

certainty (1 or 6) response was given when the difference between the

correlation of the PSF with one or the other image of the pair higher

than 0.15, a mid certainty response (2 or 5) was given when this

difference ranged between 0.15 and 0.05, and a low certainty

response (3 or 4) when the difference was lower than 0.05. We

performed the same analysis with the simulated data as with the

human data, including weighted classification, correlation of Positive

and Negative PSFs with the subject’s PSF (on average and in-

dividually, and considering all responses or only the 10 top classified

PSFs), and Classification Map and Orientation Plot analysis.

Results

The subjects identified the perceived best focus image in each of

the 100 pairs. All subjects showed a clear bias towards a subset of

PSFs. Each image was presented 10 times to the subject, and the

score was generally very repetitive. Subjects ranked only 25% of

the images with a low certainty score (3 or 4), 36% were mid-

certainty (2 or 5), and 39% were high-certainty (1 or 6).

Correlations of the natural PSF with the Positive and
Negative PSFs (no orientation)

Figure 5 shows the natural PSF for one subject (S4) and 10

top Positive (scored from 90 to 55) and 10 top Negative PSFs

(scored from 2100 to 269). Qualitatively, the Negative PSFs

tend to be vertically oriented unlike the Positive PSFs. Figure 6

shows the natural PSF of each subject, and the corresponding

average Positive and Negative PSFs (average of the 10 highest

scored PSFs), along with the corresponding coefficients of

correlation.

The average Positive PSFs show a higher correlation with

subject’s natural PSF than the average Negative PSF. The

average coefficients of correlation (across subjects) were r = 0.62

for positive and r = 0.54 for negative (see inset numbers in

Figure 6, and Figure 7a). Although smaller, the difference

between the coefficient of correlation for Positive or Negative

PSFs is still present when all Positive and Negative PSFs are

averaged (instead of the 10 highest ranked only) for 3 out of 5

subjects (Figure 7b). The difference between Positive and

Negative PSFs is more accentuated when the individual Positive

and Negative PSFs are correlated with the subject’s PSF, showing

average coefficients of correlation of r = 0.47 for the Positive PSFs

and r = 0.34 for the Negative (highest ranked responses,

Figure 7c), and r = 0.46 and r = 0.41 for Positive and Negative

(all responses, Figure 7d). These differences are statistically

significant: t-test, p,0.016 for highest ranked responses; and

p,0.031 for all responses.

Figure 10. Classification Orientation Plots from simulated responses. Ideal Positive (green, upper row) and Negative (red, mid row)
Classification Orientation Plots computed from the simulated responses for each subject. The axis of the fitting ellipses and their corresponding
angles Q are also shown (lower row, green for positive and dashed-red for negative). The subject’s natural PSF Orientation Plot (blue) and axis are
shown for reference.
doi:10.1371/journal.pone.0070856.g010
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Analysis of PSF orientation: Sampled PSF Classification
Maps and Orientation Plots

The subjects’ Sampled PSFs were correlated with the PSF

Classification Maps (Figure 8). The correlation was positive in 3

subjects out of 5.

Positive and Negative Classification Orientation Plots
were compared to the subject’s PSF Orientation Plots

(Figure 9). Except for subjects S3 and S5, there is a high degree

of overlapping of the natural and Positive Classification Orienta-

tion Plots, unlike the Negative Classification Orientation Plots. In

subjects S1, S2 and S4 coefficients of correlation are positive for

the Positive Classification Orientation Plots (r = 0.40 (S1); r = 0.24

(S2) and r = 0.42 (S4)) and negative for the Negative Classification

Orientation Plots (r = 20.35 (S1); r = 20.24 (S2) and r = 20.33

(S4)), but not for S3 (r = 20.31 and r = 0.62 for positive and

negative, respectively) and S5 (r = 0.08 and r = 0.19 for positive

and negative, respectively).

The bias of the PSF Classification Orientation Plots towards the

natural PSF is also revealed by the orientation of the fitting ellipses

(Figure 9). For all subjects except S3, the orientation of natural

PSF was within 21612 deg of the Positive Classification

Orientation Plot but around 90 deg of the Negative (on average

at 76610 deg). In contrast, for S3 there was a better alignment

with the Negative PSF within 10 degrees (whereas it was within

41 degrees for positive).

Comparison with simulated responses
Theoretical simulations of the observer’s responses (assuming

that the responses are based on correlations between the observers’

PSF and the PSF blurring the images) showed an average

correlation coefficient (across subjects) of 0.81 for positive

responses and 0.44 for negative responses (considering the top

ten responses) and 0.74 and 0.59 respectively (considering all

responses). These values set a theoretical limit to performance in

the task and show a good correspondence with the average

correlation values in the human subjects, as shown in Figure 7.

Note how the results are similarly modulated over individual

subjects in both the ideal and human performance, representing

different bounds set on performance by the match between each

subject’s own PSF and the total stimulus set.

The simulated responses were also analysed in terms of

orientation, as with the actual responses from subjects. Figure 10

compares the orientation of the Positive and Negative Classifica-

tion Orientation Plots computed from the simulated responses for

each subject. The orientation of the Positive PSF computed from

the simulated responses closely matches, within 19u, the orienta-

tion of the subject’s Orientation Plot unlike the Negative PSF

oriented at 80u, on average across subjects.

Figure 10 can be compared with the orientations of the

measured Positive and Negative Classification Orientation Plots in

the subjects (Figure 9). There is a high similarity between

theoretically simulated and actual responses. The ideal and real

response orientations fall within 40u on average for the Positive

PSF, and 27u for the Negative PSF. The largest discrepancy

(almost 90u) occurs for S3 negative response. In subjects S4 and S5

the responses are within 12u on average.

Discussion

A previous study showed that the internal code of blur was

strongly driven by the overall blur level of the subject’s HOA. The

current study shows that this internal code of blur appears also to

some extent to be adapted to the orientation of the natural

aberrations. This confirms evidence from prior studies, which have

investigated potential adaptation to the natural aberrations of the

subject, using more restricted paradigms. Artal et al. [19] showed

that images blurred by the natural aberrations of the subject were

perceived as to have better quality than images blurred by rotating

versions of the same aberration patterns. In a prior study [18],

where either images blurred with the subject’s aberrations or a 90u
rotated version of those were used as a constant reference against

images blurred by aberrations from real subjects (but similar

amount of blur) showed a bias towards the subject’s natural

aberrations (averaging 45% versus 57% across subjects). In a

companying experiment, where the aberrations of 10 subjects

(including those of the subject’s under test) were taken as a

reference against images blurred by aberrations from real subjects

(but similar amount of blur) we did not find a systematic bias

towards the subject’s own aberrations, with some subjects

attributing higher image quality to images blurred by other

subjects’ aberrations (although in many cases those showed

qualitatively similar orientation features than their own). The

cumulative results pointed toward a weak bias toward orientation.

In agreement with the previous study [18], we also found here

that, although the image blurred with the subject’s own PSF was

often selected as best from the pair, this was not always the case

(50% for S1; 70% for S2; 70% for S3; 30% for S4).

The current study used a Classification-Images inspired strategy

to extract the orientation features of the PSF internally coded as

producing best-perceived image quality. The fact that the internal

code for blur exhibits an orientation bias indicates that not all

orientations are perceived equally. In all subjects except one the

orientation of the internally coded PSF matched that of the

subject’s own PSF (within 21 degrees, on average). In one subject,

however, the orientation of the best-perceived PSF (obtained from

averaging and weighting of the all subjects’ responses) differed

from the subject’s natural aberrations (being almost perpendicu-

lar). As shown in figure 7, in this subject the correlation of the PSF

averaged across all responses with the subject’s natural PSF was

higher for the negative than for the positive. However, the

correlation between the natural PSF and the averaged PSF across

the highest ranked PSFs was higher for the positive responses than

for the negative. When the Positive and Negative Orientation

Classification Plots were estimated only for the highest ranked

responses we found that the Positive Classification Orientation

Plot was in fact aligned with the subject’s natural PSF (within

10 degrees) suggesting that in this subject, the perception of best-

focused images was in fact very selective to her own blur

orientation.

Alternatively, we tested the PSF orientation in the presence of

small focus errors, and found that this particular subject

experienced drastic changes in PSF orientation arising from

combinations of the HOA and defocus. The internal code for blur

(considering all positive responses) better aligned (within 2 degrees)

with the slightly defocused (0.5 D) PSF (and within 15 degrees for

0.4D and 0.6D). In the quest for alternative reasons why the

orientation for the internal code of blur and the natural’s PSF of

the subject disagreed in this subject (at 0 defocus/all responses), we

evaluated the aberrations of the contralateral eye. To date, all

previous studies addressing the extent to which subjects may be

adapted to their own aberrations have investigated it from

monocular measurements. However, a recent study by Kompa-

niez et al. [35] suggested that transfer between eyes may occur in

spatial visual adaptation to blur, particularly under contingent

adaptation (conflicting blur magnitude or orientation in left and

right eyes). Incidentally, the subject under test showed a

discrepancy in the orientation of the PSFs of both right and left
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eyes, although a good similarity in the amount of blur in both eyes.

Measurements of the internal code for blur (Classification-Images

test) in the contralateral eye revealed Classification Orientation

Plots for positive and negative responses strikingly similar in both

eyes (slope = 1.02, R = 0.75, p,0.05; left/right eye coefficients of

correlation 0.7116 for the positive and 0.9202 for the negative

maps). Despite the fact of both eyes revealing the same internal

code for blur, the alignment was better with the right eye PSF than

the left eye PSF, suggesting that the effect may be driven by the

dominant eye in this particular subject. The extent to which the

optical blur amount and orientation contribute to the internal

code of blur is an extremely interesting question and remains to be

elucidated.

The great similarity between the theoretically simulated

responses and the actual responses in most subjects strongly

supports the hypothesis that images blurred with PSFs better

correlated to the subject’s own are consistently perceived as to

have better quality. This shows that subjects do have some

sensitivity to the internal structure of their own PSFs. More

specifically, the orientation of the best perceived PSF (green lines,

figure 10) of an ‘‘ideal observer’’ (which would use correlations

with its own PSF as the rule to determine best quality) closely

matches the orientation of the subject’s Positive PSF (green lines,

figure 9).

In conclusion the Classification-Images inspired method is very

powerful in identifying the internally coded blur of subjects. This

pattern showed a defined orientation (generally well correlated to

the subject’s natural PSF), and was found to be consistent

throughout time (repeated measurements in the same subject

much apart) and across left and right eye of the same patient. The

fact that the internal code of blur appears rather specific to each

subject’s high order aberrations reveals that the calibration

mechanisms for normalizing blur operate using both contrast

and phase/orientation cues.
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