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Automatic Calibration Method for Driver’s Head
Orientation in Natural Driving Environment

Xianping Fu, Xiao Guan, Eli Peli, Hongbo Liu, and Gang Luo

Abstract—Gaze tracking is crucial for studying driver’s atten-
tion, detecting fatigue, and improving driver assistance systems,
but it is difficult in natural driving environments due to nonuni-
form and highly variable illumination and large head movements.
Traditional calibrations that require subjects to follow calibrators
are very cumbersome to be implemented in daily driving situ-
ations. A new automatic calibration method, based on a single
camera for determining the head orientation and which utilizes
the side mirrors, the rear-view mirror, the instrument board,
and different zones in the windshield as calibration points, is
presented in this paper. Supported by a self-learning algorithm,
the system tracks the head and categorizes the head pose in 12
gaze zones based on facial features. The particle filter is used to
estimate the head pose to obtain an accurate gaze zone by updating
the calibration parameters. Experimental results show that, after
several hours of driving, the automatic calibration method without
driver’s corporation can achieve the same accuracy as a manual
calibration method. The mean error of estimated eye gazes was
less than 5◦ in day and night driving.

Index Terms—Calibration, gaze tracking, head orientation.

I. INTRODUCTION

GAZE tracking is crucial for studying driver’s attention,
detecting fatigue, and improving driver assistance sys-

tems. Video-based methods are commonly used in gaze track-
ing but are vulnerable to the illumination changes between day
and night. Eye-gaze tracking methods using corneal reflection
with infrared illumination have been primarily used indoor [1]–
[5] but are highly affected by sunlight. Recently, video-based
eye-gaze tracking methods have been used in natural driving
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environments [6], [7]. This paper presents an automatic track-
ing system for head-pose and eye-gaze estimations in natural
driving conditions. To achieve this goal, we have developed a
novel learning algorithm combined with a particle filter. This
framework differs from previous methods, to a great extent, in
its ability to estimate a driver’s gaze zone automatically, which
minimizes the need for driver compliance.

The two main contributions of this paper are in the con-
figuration of hardware and designs of algorithms. The first
contribution is the new learning algorithm that allows for the
self-classifications of the different head poses and eye gazes.
This new algorithm is motivated in part by the work of Toyama
and Blake [8]. We define a set of head poses as a metric space
and assign those head poses into corresponding gaze zones.
Unlike other methods, it does not need to be trained before
system deployment because the classification process can be
completed and tuned during driving. The self-learning method
is possible based on two reasonable assumptions: 1) when a
driver is seated, the driver’s head position relative to the side
rear mirrors, the rear-view mirror, the windshield, etc., does not
vary greatly and, 2) most drivers have habitual and consistent
ways of moving their head and eyes when looking in a specific
direction. The learning algorithm is crucial for the system’s
ability to calibrate automatically [9].

Our second contribution is the method of combining face de-
tection, a learning algorithm, and particle filtering in a cycling
structure that enables the tracking system to run automatically.
These algorithms are put in a proper logical order so that they
can call each other without manual intervention.

Satisfactory accuracy in head-pose and eye location esti-
mations has been achieved in constrained settings in previous
studies [10], [11]. However, in the absence of frontal faces that
is common in driving, eye locators cannot adequately locate the
pupil. While precise gaze direction provides useful information,
coarse gaze direction is often sufficient, for instance, for deter-
mining whether a driver’s attention is off the road ahead since
most natural eye movements are less than 15◦ and a person
usually starts moving the head to a comfortable position before
orienting the eye [12]. Points of interest are grossly delineated
by the head pose. In a meeting situation, for instance, the head
pose was shown to contribute about 70% of the gaze direction
[13]. Therefore, the head pose is important for the estimation
of coarse gaze direction, which is called the gaze zone in this
paper. The gaze zone was estimated based on facial features,
face location, and face size using a self-learning method and
particle filtering. The system was shown to operate in day and
night conditions and is robust to facial image variation caused
by eyeglasses as it does not solely rely on facial feature points,
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such as eyes and lip corners, for gaze estimation. Because of its
low computation, it can work in real time on a laptop computer.

II. RELATED WORK

There are driver gaze tracking methods that consider only
head orientations [7]. The size, shape, and distance of facial
features and the distance between these features, such as the
distance between the left and right pupils, are used to estimate
a driver’s head orientation [14]. The head-pose estimation often
requires multiple cameras or complex face models that require
accurate and lengthy initialization [11]. Although several head-
pose or eye location methods have shown success in gaze
estimation, the underlying assumption of being able to estimate
gazes based on eye location or the head pose is only valid in a
limited number of scenarios [15]–[18].

Smith et al. analyzed color and intensity statistics to find
both eyes, lip corners, and the bounding box of the face [19].
By using these facial features, they estimated continuous head
orientation and gaze direction. However, this method cannot
always find facial features when the driver wears eyeglasses
or makes conversation. Kaminski et al. analyzed the intensity,
shape, and size properties to detect the pupils, nose bottom, and
pupil glints to estimate continuous head orientations and gaze
direction [20]. By using the foregoing methods considering
both eye and head orientations, detailed and local gaze direction
can be estimated. However, the accuracy of the eye location
significantly drops in the presence of large head movements.
This is because, in some cases, the eye structures are not
symmetric; thus, the algorithm delivers poorer performance
with respect to the distance from the frontal pose.

Because errors in facial feature detection greatly affect gaze
estimation [12], many researchers measured coarse gaze di-
rection by using only the head orientation with an assumption
that the coarse gaze direction can be approximated by the head
orientation [7]. The methods that only consider head orientation
can be categorized into methods based on shape features with
the eye position, methods based on shape features without the
eye position, methods based on texture features, and methods
based on hybrid (shape and texture) features.

Methods based on shape features with the eye position
analyze the geometric configuration of facial features to esti-
mate the head orientation [14]. These methods rely on precise
localization of facial features, which is prone to error when
illumination varies and eyeglasses are used in practice. The
methods based on texture features find the driver’s face in
the image and analyze the intensity pattern of the driver’s
facial image to estimate the head orientation. Learning tech-
niques such as principal component analysis (PCA), kernel
PCA (KPCA), linear discriminant analysis (LDA), and kernel
discriminate analysis have been used to extract texture features,
and these features are then classified to obtain the discrete head
orientation [21]. Ma et al. analyzed the asymmetry of the facial
image by using a Fourier transform to estimate the driver’s
continuous yaw [22]. The methods based on texture features are
relatively reliable because specific facial features do not need
to be localized. However, accuracy can degrade when the face
detection module cannot give a consistent result [23]. Wu et al.

Fig. 1. Framework of the proposed method.

detected the driver’s discrete yaw and pitch by using a coarse-
to-fine strategy [24]. This method is based on hybrid features
combining shape and texture features to estimate the head
orientation. Murphy-Chutorian et al. estimated the initial head
orientation by using a local-gradient-orientation-based (LGO)
head orientation method [25], and detailed head orientation
was computed by using a 3-D face model for fitting and
tracking [26], [27]. This method showed excellent performance
but required accurate initialization. A general drawback of the
hybrid methods is the relatively high computational complexity
caused by combining two feature extraction methods [24].

III. PROPOSED GAZE-ZONE ESTIMATION METHOD

A. Overview of Proposed Method

This paper presents a combination of face detection [28],
self-learning, and particle filtering to build a system for driver
gaze-zone estimation. The three modules are used for detecting
driver’s frontal face, determining the classification of driver’s
head orientation, and estimating the current driver’s head pose
and moving velocity, respectively. Once face detection is com-
pleted, the frontal face of the driver is buffered, and the particle
filtering module calculates the current head pose based on the
previous state and feature selected. Simultaneously, the head-
pose data are fed into the learning module for updating the
classification of head orientations relative to gaze zones. The
returned results of the particle filtering is utilized to estimate
current driver’s gaze zone based on the distance from the
representatives of the gaze-zone index set and the selected
gaze-zone index. The driver’s head orientation and position
information are used to determine the gaze zone. The logical
flowchart of the three algorithms is depicted in Fig. 1.

In the face detection step, the face region is located within
the driver’s entire head image to remove the unnecessary
background, and the region of the head is used in the following
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Fig. 2. Face detection with a bounding box.

steps. In addition, the confidence probability is used to repre-
sent the accuracy of the head position estimation.

To calculate the extremely large head rotation angle, the
head shape and facial features are combined to offer more raw
information for the head position. Facial features are used when
the frontal face is available. When no frontal face is detected,
an appearance-based method is used to track the head position.
The head pose provides a coarse indication of gaze that can
be estimated in situations when eyes are not visible (such as
low-resolution imagery, large head rotation angle, and in the
presence of eye-occluding objects such as sunglasses).

B. Frontal Face Detection

It is necessary to detect the driver’s frontal face first since
the learning algorithm cannot perform correctly if the center
coordinates of the driver’s frontal face are not known. We used
the frontal face detection method introduced in [28]. The main
advantages of this method are threefold. The first advantage is
its integral image representation, which is the sum of the pixels
values above and to the left of a specific location in a 2-D
plane. This is useful for calculating Haar-like features rapidly
at any scale. The second advantage is a classifier built upon
the AdaBoost learning algorithm by selecting a few critical
features from a huge number of features extracted with the help
of the integral image. During learning rounds, the examples are
reweighted to put emphasis on those incorrectly classified by
the previous weak classifiers that depend on a single feature.
Finally, it uses a method where the more complex classifiers
are arranged in a cascade structure that drastically reduces the
detecting time by removing unpromising regions. To represent
the detecting area, a bounding box is set to enclose the whole
face of the driver, as shown in Fig. 2. After the face region is
found, the background within the box is removed, and the re-
gion of the frontal face is configured for facial feature detection
that is later used as the sample points in the particle filtering.
Initially, the face detection is executed repeatedly within a short
period of time. Afterward, the center of the bounding boxes of
the face is used to guide the detection by increasing the weight
of those locations. The face detection runs at a regular interval
and modifies the mean center coordinates periodically.

As indicated in Fig. 2, simple facial features, such as the
center of the driver’s face and the left and right borders
within the bounding box, can be extracted using the method of
Ohue et al. [29]. Once these features are determined, a proper
transformation is implemented on the specific area of the raw
images in terms of image patches. Generally, one Gaussian and
several rotation-invariant Gabor wavelets are applied on the

Fig. 3. Transformed image-depth image. (a) Mean face when looking at the
left side mirror. (b) First eigenface of (a). (c) Second eigenface of (a). (d) Binary
edge image of (c).

Fig. 4. Successful facial feature detection [28] used to enhance the accuracy
of gaze estimation is shown as circles marking the lower lip, the nostrils, and
the irises.

training patch images extracted from head images. A simple
Gabor wavelet is defined by

ψω0,σ,α(x, y) = exp

[
− 1

2σ2
(x̃2 + ỹ2)

]
cos (2πω0x̃) (1)

where x̃ = x cos (α)y sin (α) and ỹ = x sin (α) + y cos (α).
ω0 denotes the angular frequency, σ is the scale parameter,
and α is the orientation of the wavelet. Thus, we obtain the
rotation-invariant wavelet by integrating a simple wavelet over
the rotation field of α. The distance function on the space A is
the L2 distance function.

Training patches are extracted from head images by locating
a tight bounding box enclosing the head. These patch images
are resized to 64 × 64 resolution and preprocessed by his-
togram equalization to reduce the effect of lighting variations.
The eigenface and eigenhead images are calculated using the
PCA method. Thereafter, Gabor wavelets are applied on these
eigenimages, as defined by (1). The rotation-invariant Gabor
wavelets that we used are defined by the scales σ = 1, 2, 4
and angular frequencies ω0 = (1/2), (1/4), (1/8). The resulting
images are sampled at 191 points of a regular grid located inside
a reference disk. The transformations are shown in Fig. 3.

In addition, the face detection method (available in OpenCV)
in [28] is also used as a supplement when the detection is
successful, to enhance the accuracy of the eye-gaze estimation.
An example of detected facial features using [28] is shown
in Fig. 4. When no frontal face is detected, however, the
appearance-based method can be used to track the head position
even when eyes are not visible due to, for example, large head
rotation and eye-occluding sunglasses (see Fig. 3).

The proposed method does not use any head or face model
since gaze-zone position are trained base on the detected
features. This method has two advantages over other shape-
feature-based methods. There is no need to train a specific
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model for each driver, and it is relatively robust to the wearing
of eye glasses or when the head movement is large.

C. State Model

The classification algorithm is based on the true metric space.
Given metric space X , the distance function d defined on this
space satisfies the following three properties: 1) d(x, y) ≥ 0
for all pairs x, y ∈ X , and d(x, y) = 0 if a = b; 2) d(x, y) =
d(y, x); and 3) d(x, y) + d(y, z) ≥ d(x, z)

In this paper, the driver’s head is modeled as a rigid object
constrained to 4◦ of freedom in the video image plane. We
define the state Xt = (At, vt), where At = (Tx, Ty, αt, βt) is
a 4-D vector consisting of two translations and two rotations
(i.e., yaw and pitch), and vt represents the linear and angular
velocities. When looking forward in driving, the driver’s head
motion is normally slow. Only when the driver moves his head
can linear dynamics provide a good temporary approximation
of the motion. Thus, we use the mixed state X∗

t , as given in [26],
with Xt = (1 − τt)X

(1)
t + τtX

(2)
t to represent this situation,

and it is defined as follows:

X∗
t = (Xt, τt) (2)

where τt is a binary random variable with τt ∈ {0, 1}, X(1)
t =(

1 0
0 0

)
X

(1)
t−1 +

(
u
(1)
t
0

)
denotes the state at time t without

velocity, and X
(2)
t =

(
1 1
0 1

)
X

(2)
t−1 +

( 0
u
(2)
t

)
denotes the con-

stant velocity. The distribution of τt depends on the motion of
the object. Roughly speaking, τt = 1 while

d(Yt, Yt−1) > ε1 or d(At, At−1) > ε2

where ε1 and ε2 are sufficiently small positive numbers; oth-
erwise, τt = 0. In addition, Yt = TεXt + Vt is a realization
of Xt provided that Tε is a transformation between the two
image spaces and that Vt is the noise of time point t [8]. In
addition, the transition density ft(Xt|Xt−1) can be determined
by this state model along with the observation density given by
gt(Yt|Xt) ∝ (1/B) exp(−λd(Yt, TεXt + Vt)), where B and
λ are normalizing constants. Utilizing the method of particle
filters, the current state Xt, which is estimated by a mass
of sample points assigned with weights, is given by X̂t =∑N

n=1 w
(n)
t x̃

(n)
t , where x̃

(n)
t is the nth sample point of the

current state.

D. Classification of Head Orientations

Our proposed method includes a set of pose-annotated key
frames obtained by using a single camera and a learning algo-
rithm similar to that in [8]. The information that each key frame
maintained is described as follows:

Mj = {Ij , Zj , Xj}. (3)

Provided that Xj is the image set of frame j, and Ij and Zj are
the intensity and depth images with this image set, respectively.

Adopting the learning algorithm, the head-pose key frames are
defined by the following set:

M = {Mj |1 ≤ j ≤ k}

where k is the number of key frames and is determined by the
number of configured gaze zones. We initialize representative
states for each gaze zone by splitting the video image rectan-
gular into numbers of sectors, which amount to the number of
gaze zones and each of whose center corresponds to the gaze-
zone index, based on coordinate’s representations transmitted
by the head sensor. To achieve the best result, each image
element in the incoming frame should be processed, and these
elements then are reorganized to its corresponding gaze-zone
index set. Once each such set is well defined, the new frame
(current) can be approximated by measuring the distance from
each representative of the gaze-zone index set based on the
conditional probability distribution p(Mj |Mt), and then a basic
frame is chosen to substitute the current frame based on this
probability distribution so that we can directly determine which
zone the driver is looking at. To make the computation more
efficient, the cardinality of gaze-zone index set #M needs to
be properly small.

The exemplar set needs to be determined for each driver.
Here, A∗ = {A∗

i , i = 1, 2, . . . k} denotes the final learned result
for each gaze zone as representations for basic frames. In
this paper, k = 12 as we divide the field of view into 12
different gaze zones, and Y = {Y1, Y2, . . . , Yn} is the image
sequence. When the exemplars are determined from the learn-
ing algorithm, the learned image set is expressed as Y∗ =
{Y ∗

0 , Y
∗
1 , . . . , Y

∗
k }. The learning process is applied at a regular

time interval so that each gaze zone is associated with standard
head poses. In addition, distance functions are defined on the
image space and transformed image space.

We constructed a standard data of yaw and pitch based on
an inertial head position sensor, which is expressed by A∗

0 =
{A∗

10, A
∗
20, . . . , A

∗
k0}. The average distance vector of yaw and

pitch between adjacent gaze zones is computed by

(αadt, βadt) =
1
m

∑
(i,j)(ad)

∣∣(T ∗
y,pA

∗
i0 − T ∗

y,pA
∗
j0

)∣∣
provided that m counts the adjacent gaze-zone pairs, and∑

(i,j)(ad) |(T ∗
y,pA

∗
i0 − T ∗

y,pA
∗
j0)| means that only the absolute

difference of adjacent states is counted (ad = adjacent). In
addition, the notation | · | means that each component of vector
T ∗
y,pA

∗
i0 − T ∗

y,pA
∗
j0 is assigned by its absolute value so that the

average vector is finally returned.
The driver’s gaze zone is analyzed in terms of a probability

derived from the distance function that measures the yaw and
pitch between the given status and each element of a trained
exemplar set (basic frame) A∗ or Y∗. In what follows, we
exploit the mixture centers represented by the estimated yaw
and pitch for each gaze zone.

The acquisition of At for each image is based on the particle
filtering algorithm, which will be described in the following.
To improve the initial alignment, the first face image is chosen
such that

Y0 = Y ∗
0 = argmin

Y ∈Y
max

Y ′∈Y−{Y }
d(Y, Y ′).
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The corresponding state A0 (first component of X0) is deter-
mined, which may be different from the zero point of yaw and
pitch.

The centers for gaze zones are formed in such a way in
which the sequence of Ai, associated with image sequence Yi,
is selected to be approximately identical spaced in distance.
The base lattice is generated as each point shares the aver-
age yaw deviation ρy = max dy(Ai, Aj)/y and average pitch
deviation ρp = max dp(Ai, Aj)/p measured from its adjacent
point, where dy is the yaw distance, dp is the pitch distance,
and Ai, Aj ∈ A. Integers y and p are chosen based on the
distribution of gaze zones. Thereafter, the ratio coefficient vec-
tor is figured out by the formula (cy, cp) = (αadt/ρy, βadt/ρp)
between standard data and samples.

Hence, for each j, the element of the training set is put
into class j if and only if ‖Ty·pAi − T ∗

y,pA
∗
j0‖ is the mini-

mum after measuring with all elements in AL, where ‖ · ‖ is
the norm on space {(Ty·pAi)}. A quotient set Ā = {AJ , j =
1, 2, . . . , k} is then derived from the classification, and the new
representative for each element in Ā is determined by A∗

i =
argminA∈Aι

maxA′∈Aι\{A} ‖Ty·pA− Ty·pA
′)‖. Thus, the fi-

nal learning result for exemplar set A∗ = {A∗
i , i = 1, 2, . . . , k}

is formed. The representing gaze zone of exemplars is denoted
by the indicator of exemplar element.

The whole learning algorithm is summarized as follows:

This learning algorithm runs routinely as all parameters are
set up before the system is initialized. In addition, the repeated

steps of frontal face detection are also included in the learning
structure. Therefore, we can achieve the automatic control over
the learning process embedded in the calibrations of head
orientations without driver’s collaboration toward specific head
poses.

E. Particle Filtering for State Estimations

We usually consider only a probability density function
denoted as p(X). However, in some specific cases, we use
notation P (X) to stand for the associated probability distribu-
tion (measure). The mathematical expressions adopted in this
algorithm are consistent with those in [31].

Particle filtering is an inference technique that gives an
estimation result of an unknown state Xt based on a sequence

of noise observations y1:t
def
= {y1, y2, . . . , yt}, which is a real-

ization of the sequence, arriving in an incremental time step. In
this paper, we use the state model referred in section E of [31]
with Markovian assumptions. The sample states are selected
according to the transition density function and the observation
density function.

The evaluation of the transition and observation densities
is a crucial part of the particle filtering algorithm described
later as it determines the motion of the object and puts a great
emphasis in the simulation step. The adoption of Monte Carlo
methods for nonlinear and non-Gaussian filtering dates back to
the pioneering work of [32] and [33] with the aid of importance
sampling [34]. Its basic idea comes from the fact that when the
analytic form of the probability density function p(X) or the
probability distribution function P (X) is not available, we must
select the samples according to an instrumental distribution
Q(X) as a substitute for the true distribution. Finally, the
true distribution was approximated by weighing these samples
after the resampling step is executed, which is helpful for
determining the best expectation values of specific functions
with variables as the sample points. The details of this algorithm
can be found in [31]. Fig. 5 shows the flowchart.

The basic idea of resampling is to select a number from
the set [N ] = {1, 2, . . . , N} with P (X = i) = w

(i)
t , and it is

easily comprehended that if we choose N digits from the set
[N ], the selecting times each digit assigned obey the following
probability distribution:

P (X1 = i1, X2 = i2, XN = iN )

=

(
N

i1i2, . . . , iN

)(
w

(1)
t

)i1 (
w

(2)
t

)i2
. . .

(
w

(N)
t

)iN
(4)

where Xj = ij . It indicates that the digit j is selected by ij
times among the N selecting times and that i1 + i2 + · · ·+
iN = N . In addition,

(
N

i1i2,...,iN

)
= (N !/i1!i2! . . . iN !) denotes

the multinomial coefficient. Then, a new particle index set is
naturally constructed as a multiset B = {i1 · 1, i2 · 2, . . . , iN ·
N}, with i1 + i2 + · · ·+ iN = N . There exists a one-to-one
map σ from [N ] to B, and then we can resample the particles
as x

(i)
t = x̃

(σ(i))
t and reset w(i)

t = (1/N). As the unimodality
of the multiplicative decomposition on the right side of (4) was
proven in the combinatorial probability literature in advance,
we can thus achieve the best resampling result by searching
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Fig. 5. Flowchart of particle filtering.

proper values of i1, i2, . . . , iN that attain such peak. We need to
pay attention to the fact that the particle w̃(i)

t may be repeatedly
sampled in the resampling step. Therefore, instead of learning
all possible calibrations in 2-D space, we propose to automati-
cally re-target a set of known points on a target plane to simulate
a recalibration each time the driver moves his head. Using
this new set of known points and the known pose-normalized
displacement vectors collected during the calibration phase,
it is possible to automatically recalibrate and develop a new
mapping.

As a result, the indicated gaze zone of the current head
pose will be estimated more accurately. Sampling importance
and resampling (SIR) (which is a part of the particle filtering
method) has made great changes when compared with im-
portance sampling. Our SIR includes the following aspects:
1) the overall algorithm can no longer be viewed as a simple
extending of importance sampling because it embeds a repeated
application of the importance sampling and resampling; and
2) the resampled paths x

(i)
0:t are dependent on each other. We

summarize this algorithm as follows.

Algorithm 2 Particle Filter

Initialization:
for i = 1 : N

Sample x̃
(i)
0 ∼ q0(X0|Y0 = y0);

Assign initial importance weights

w̃
(i)
0 =

g0

(
y0|x̃(i)

0

)
p0

(
x̃
(i)
0

)
q0

(
x̃
(i)
0 |y0

)
end
for t = 1 : T

if Resampling (condition)
Select N particle indices ki ∈ {1, 2, . . . , N}

according to the multinomial distribution:(
N,w

(1)
t−1, . . . , w

(N)
t−1

)
Set x(i)

t−1 = x̃
(ki)
t−1 , and w

(i)
t−1 = (1/N), i = 1, . . . , N

else
Set x(i)

t−1 = x̃
(i)
t−1, i = 1, . . . , N .

end
for j = 1 : N

Propagate

x̃
(j)
t ∼ qt

(
Xt|x(j)

t−1, yt

)
;

Calculate weight

w̃
(j)
t = w̃

(j)
t−1

gt

(
yt|x̃(j)

t

)
ft

(
x̃
(j)
t |x(j)

t−1

)
qt

(
x̃
(j)
t |x(j)

t−1, yt

)
end
Weight normalization

w
(i)
t = w̃

(i)
t /

N∑
m=1

w̃
(m)
t , m = 1, 2, . . . , N

Return Êht(Xt) =
∑N

n=1
w

(n)
t ht(x̃

(n)
t );

end

Thus, we obtain the estimated Ât at time point t, and its
corresponding gaze zone is determined by

k = argj min
A∗

j
∈A∗

d
(
Ât, A

∗
j

)
(5)

where d(Ât, A
∗
j) is an image-based distance metric. The exem-

plar set is updated at a regular time cycle interval.

IV. EXPERIMENTAL RESULT

We use two methods to verify the calculated gaze direction.
First, an inertial motion sensor (Colibri made by Trivisio,
Germany) was attached on a driver’s head to record the 3-D
head movement. Second, we recorded testing videos (image re-
solution: 320 by 240 pixels) in which a driver was instructed to
look at given targets. Videos were collected in four driving con-
ditions: daytime, nighttime, wearing glasses, and wearing sun-
glasses. Video frames from 1 to 500 are used to detect frontal
face and determine the center point; frames 501 to 5000 are em-
ployed to learn the exemplar element of each gaze zone; the re-
maining frames are utilized to test the robustness of the system.
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Fig. 6. Gaze zone for calibration and verification in the car.

Fig. 7. Gaze zones denoted by the head pose and the eye gaze of images
placed at each zone. The lowest face image represents looking at the back
window.

A. System Setup

The gaze-zone estimation system consisted of a monocular
camera mounted at the center of the dashboard pointing to the
driver. To be used in various vehicle environments, including
day and night, the cameras were equipped with an additional
infrared illumination source that was controlled by an automatic
switch illumination sensor. In daylight, the infrared illuminator
is turned off automatically, and visible light is used to track
facial features and the head structure. When visible light is too
weak to recognize the face, the infrared illumination turns on
automatically.

Facial features are extracted after the face region is detected
using the method in [28]. As the system does not solely rely
on facial features, it can still estimate gaze direction even when
the detection of some facial features fails. Because of the self-
learning algorithm, the driver’s cooperation for this experiment
is not needed. Thus, a set of data is chosen randomly to test
the estimation accuracy of the proposed method from about
200 000 frames of eight subjects.

B. Gaze-Zone Estimation

Similar to the method in [7], the field of view of a driver
is partitioned into 12 different gaze zones corresponding to
the two side mirrors, the rear-view mirror, the dashboard, the
console, the back window, and six zones on the windshield
(see Fig. 6). These gaze zones cover most of the possible gaze
directions in real-world driving. The typical head-pose image
for these zones is shown in Fig. 7.

TABLE I
GAZE-ZONE REPRESENTATIVES

The gaze-zone estimation needs to be initialized under a
condition in which the zero point of yaw and pitch represents
straight-ahead gaze direction, i.e., gaze zone 7. In this paper,
this initialization was performed using the first 500 frames,
and the center point was determined by a weighted average of
estimated gaze direction.

In our method, yaw and pitch can be accurately evaluated but
not roll; however, they are sufficient for gaze-zone estimation.
The calculation for yaw and pitch depends on the deviated
coordinates of the center of the bounding box compared with
the coordinate of the frontal face center after the face detection
step by the following:

α = 2 arcsin
yd
2l

, β = arctan
xd

l

where xd and yd represent the row and column deviation from
the zero point, respectively. l represents the distance from the
center point of the driver’s face to the rotary axes; there are
two rotary axes of the driver’s head. The process of frontal
face detection will periodically operate to modify the zero
point of yaw and pitch to enhance the correct rates for head-
pose classification that is crucial for the current gaze-zone
estimation.

We collected a standard data set of head poses for each gaze
zone using a head motion sensor (see Table I). For each partic-
ular driver, the video system gradually revises the 12 exemplar
sets, and proper elements are assigned to distinct exemplar
sets with the highest probability. Typically, the personalized
yaw and pitch values for each gaze zone are nearly stabilized
after about 5000 video frames. In the following tracking, the
system seeks to estimate head poses and gaze zones by finding
the minimum distance between the previous exemplars and the
current sample using (5).

Fig. 8 shows the yaw and pitch in the four driving circum-
stances, i.e., daytime and nighttime, and wearing glasses and
wearing sunglasses. The convergence of the curves indicates
that the driver mostly looked forward after the first couple of
minutes of starting to drive.

As the system runs further, the confidence probability in-
creases, as shown in Fig. 9. This helps in confirming the
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Fig. 8. Means of (a) yaw and (b) pitch from frames 501 to 9000 in each driving
condition.

Fig. 9. Mean confidence probabilities of head-pose estimation increases along
with the number of frames in different driving conditions.

tracking accuracy. The performance of the particle filtering
greatly relies on the values of confidence probability, the ratio
of matched features, and the total number of features of ex-
emplars. The statistical values for confidence probability from
frames 501 to 9000 in four driving conditions are shown in
Table II. Although the confidence probabilities for the four
driving conditions are somewhat different, which could be due
to the particle filtering algorithm not fully converging, they are
sufficient for our application.

TABLE II
STATISTICAL PROPERTIES FOR MEANS OF CONFIDENCE PROBABILITIES

Fig. 10. Probability distribution of the patronized time of different zones.

Experiment results (see Fig. 11) shows that large errors of
head motion velocities appeared only in a limited number of
frames. In addition, the mean value of the velocity converges
as the number of switch points becomes large, which indicates
good stability of the driver’s head movement. The value of 1.56
is assigned to the velocity threshold up to the current switch
points for which condition. This threshold can be utilized in
the other three conditions, provided that the mean velocity
of head movement maintains high stability and consistency.
The determination of threshold proceeds automatically while
adopting the learning algorithm, and this value continues to be
modified.

C. Gaze-Zone Statistics

Gaze zone 7 should be patronized in the majority of the
time samples because drivers almost always look forward. Our
experimental data showed that this is indeed the case. The
probability distribution of patronized time for the gaze zone is
depicted in Fig. 10. The result mainly relies on the classification
in the learning algorithm. Thus, it reflects the performance of
the learning algorithm.

Fig. 10 also shows that the times (fraction of frames) that the
driver looked at zones 1, 2, 4, 6, and 12 are higher than the times
the driver looked at other noncenter zones. In other words, the
driver had a relatively higher chance to look at side mirrors, the
review mirror, and the center console.

D. Estimation Result Compared With Ground-Truth Data

The motion-sensor ground-truth data were then used to com-
pare with the head pose computed using our algorithms. Fig. 11
shows the tracking errors for randomly selected data segments
as an example. It can be seen that the absolute mean errors
at a steady state of yaw and pitch are about 2◦. Although the
error at the beginning was larger, the rapid convergence of
these curves indicates the stability of the automatic gaze-zone
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Fig. 11. (a) Absolute average error of yaw over four subjects from frames
7501 to 9000 in four scenes: daytime, nighttime, wearing glasses, and wearing
sunglasses. (b) Absolute average error of pitch from frames 7501 to 9000 in
four scenes: daytime, nighttime, wearing glasses, and wearing sunglasses.

estimation. It sometimes may take a longer time to reach a
stable status while the final success detection rate (SDR) is still
high. Slow convergence of errors can be resolved by modifying
the center point and by running the learning algorithm (head-
pose classification) more frequently.

We achieved high accuracy of head-pose and gaze-zone
estimations. As shown in Table III, the absolute mean error is
less than 5◦ (with sun glasses) and less than 2.3◦ in all other
conditions. This result also serves as a separate evaluation of the
learning algorithm since the performance of particle filtering
has been estimated by the confidence map. The key to achieving
a good result is that the zero coordinate of yaw and pitch
are correctly determined, and the classification head poses are
correct. Although it will generate a small error in selecting
the coordinate system comparing with that created by standard
data, such error is permitted in the overall estimation step. In
Table III, we also show the SDR for yaw and pitch separately,
each of which affects the correct gaze-zone estimation if the
value of the error exceeds the corresponding threshold (9.5◦ and
4.5◦ for yaw and pitch, respectively). The success rate of gaze-
zone estimation detection ranged from about 90% to nearly
100%. When the gaze-zone estimation was wrong, the incorrect
selection was always to the adjacent zone.

TABLE III
STATISTICAL RESULTS FOR HEAD-POSE AND GAZE-ZONE ESTIMATION

E. Estimation Result Compared With Similar System

A system that is most similar to our system is described
in [7]. It utilized the ellipsoidal face model to determine the
driver’s yaw angle. A support vector machine was adopted to
train the exemplar set and each of the elements was assigned a
specific gaze zone. The SDRs of our system are almost identical
to their performance, as shown in [7, Tables V and VII]. An
advantage of our technique is that our system can operate
automatically, whereas the technique in [7] requires the driver’s
cooperation in the learning step.

V. CONCLUSION

We presented an approach to calibrating the eye gaze in a
driving environment which achieved high accuracy of gaze-
zone estimation while implementing an automatic learning
algorithm and a particle filtering algorithm. This paper demon-
strated robust estimates of the driver’s gaze direction without
need of the driver’s cooperation in a calibration process. This
advantage makes it suitable for wider application in driving re-
search, particularly for monitoring driver inattention [35], [36].
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