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Abstract. Visual prostheses require an effective representation method due to the limited display condition
which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes
in images carry essential information for object recognition. Typical binary (black and white) edge images
have been used to represent features to convey essential information. However, in scenes with a complex clut-
tered background, the recognition rate of the binary edge images by human observers is limited and additional
information is required. The polarity of edges and cusps (black or white features on a gray background) carries
important additional information; the polarity may provide shape from shading information missing in the binary
edge image. This depth information may be restored by using bipolar edges. We compared object recognition
rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of
bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar
edge images and the improvement was significant in scenes with complex backgrounds. The results also sug-
gest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boun-
daries of shape may confound the recognition. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.6.061619]
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1 Introduction
Human object recognition is a complex process of interpre-
tation. Various models of object recognition have been
proposed, including view-based models1,2 and structural
description models.3,4 View-based models assume that
objects are represented as collections of viewpoint-specific
local features, while structural description models, such as
the recognition by components model, assume objects are
represented as configurations of simple volumes or parts
(“geons” or geometric cones) and recognized using a bot-
tom-up process.3,4 Whether object recognition is purely
based on a view-invariant structural description (object-cen-
tered models) or on view-specific features (view-based mod-
els) is arguable; however, features that include edge lines,
narrow bars, and cusps are presumed to be visual system
primitives in object recognition.1–6

Although the key features are essential for object recog-
nition, the natural color image is a better representation for
object recognition than only a feature-detected image.5

However, in limited display conditions, such as low dynamic
range (the number of displayable or perceivable gray levels)
or low-resolution display, or in limited observation condi-
tions (visually impaired people), such as patients who expe-
rience reduced visual acuity and contrast sensitivity due to
macular disease,7,8 a scene filtered to feature representation
may be an effective visual descriptor for object recognition.4,5

Various visual prostheses for blind people have been
developed, including retinal and cortical implants 9,10 and
visual sensory substitution devices (using inputs from other

sensory channels). Although some level of vision can be par-
tially restored by such prostheses, extremely low spatial res-
olution (60,11 400,12 and 150013,14 electrodes resolution) and
low dynamic range (binary or at most 3 or 4 levels15) limit the
utility of the current visual prostheses. Such devices have
been tested with blind subjects and demonstrated improve-
ment of discrimination performance, but limited ability in
providing the recognition of objects.12,16,17 Dramatic improve-
ment in the resolution and dynamic range of the visual pros-
theses is unexpected in the near future. Providing effective
representation methods suited for the limited resolution
and dynamic range of the visual prostheses is a promising
approach to improve object recognition.18–21

Various feature detection (mostly edges) and representa-
tion methods have been proposed6,22–24 to effectively convey
information from scenes for object recognition in the human
visual system.5,21,22,25 Since edge images are thought to pro-
vide useful representations for object recognition, adding
high contrast edge information has been proposed as a way
of enhancing image visibility for visually impaired peo-
ple.7,26 For the same reasoning and due to the limited
dynamic range of visual prostheses, many have proposed
using binary edge representations for these systems.18,21,27

However, edge representations in human vision were funda-
mentally different from those used in computational
algorithms.5 Generally, edge detection algorithms merely
locate edge pixels defined by luminance or color differences
within a small region of the image.5,28 Differences exceeding
a threshold are represented in black or white pixels on a con-
trasting background (i.e., binary edges). The thresholds are
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typically selected manually, though a statistical method was
proposed.29 In comparison, edge extraction in human vision
is thought to be an abstraction of the scene using global
information (e.g., shading includes shadow created by illu-
mination condition, perceived depth, and overcoming occlu-
sion) to combine features that form regions, volumes, or
some other intermediate-level representation (e.g., grouping
and segmentation).1–5

Using cluttered scenes as stimuli for object recognition
studies may illustrate the difference between the efficacy
of object recognition from original and feature-extracted
images (e.g., edge image). The human visual system is
thought to convert the scene to feature components by seg-
regating the key objects and suppressing background clutter
using global information and intermediate level processing.5

However, if an observer is presented with the binary edge
image rather than the original image, segregating the target
object in cluttered scenes may be more challenging because
all edges from the foreground and background are repre-
sented equally without useful global information. While
edges from background clutter do not contribute to the target
object recognition, they frequently interfere with the edges of
the target object.5,21

Sanocki et al.5 compared object recognition between full-
color images and binary edge images, with and without
manual removal of background clutter following the 1-s pre-
sentation. The average recognition rate of binary edge
images was only 41.2% with the background (70% without
background), significantly lower than full-color images
(90.6% and 89.8% with and without background, respec-
tively). Manual removal of background clutter significantly
improved object recognition of binary edge images because
segregation requires considering different groupings of
edges as figure and ground; the increased number of edges
may greatly increase complexity. However, the effect was
minimal in the color images, presumably because of a ceiling
effect.5 Processing that facilitates background clutter sup-
pression in binary edge images may improve object recog-
nition. Jung et al.21 also compared object recognition in
binary edge images with and without background clutter.
The binary edge images without the background clutter are
5.6 times more likely to be recognized than binary edge
images with background clutter.

Although removing background clutter from binary edge
image resulted in significant improvement in object recogni-
tion, it is not solely based on image information and requires
additional captured information, such as depth map, focus
difference21,30–32 or high-level image processing for compu-
tational object recognition.33 In edge images, improving the
representation method that may convey any global informa-
tion to suppress background clutter with minimal cost rather
than an additional process for background clutter removal
is promising for visual prostheses. The bipolar edge filtering
represents contrast polarity of the edge line in addition to the
location of the binary edge line representation.6,7,26 The con-
trast polarity is one of possible promising information24,34 to
be represented with low additional computational cost,
requiring only one more gray level for the visual prostheses.
We have suggested that the bipolar edge representation may
provide an advantage for prosthetic systems that can provide
more than two levels of stimulation.18,21,27

2 Bipolar Edge Images

2.1 Peli’s Bipolar Edge Detector
Peli6 proposed a bipolar edge detection algorithm motivated
by a model of the human visual system. Human visual sys-
tem models perform multiscale bandpass filtering, and the
measured contrast sensitivity function is a measure of the
system detection threshold in each band. Peli’s bipolar
edge detector uses one-octave wide bandpass filters sepa-
rated by one octave. Binary phase congruence across a range
of scales results in three gray levels to represent two different
polarities of contrast (black and white lines over gray back-
ground), as shown in Fig. 1.

Whereas binary edge image represents only the location
of edges and cusps [Fig. 1(b)], bipolar edge image [Fig. 1(c)]
can represent the luminance transition (brighter and darker
side) of features as well as the location. Note that the binary
edge image converted from the bipolar edge image [Fig. 1(d)]
verifies the similarity of the edge location between the binary
edge and bipolar edge images.

Peli’s bipolar edge detector has no free parameters that
were fitted to the images or adjusted in any way. The only
adjustable parameter is the assumed angular size of the
image. Due to the contrast sensitivity function and bandpass
filtering, more features are detected by Peli’s bipolar edge
detector in the nearer image (wider angular size) than in
the farther image (narrower angular size) as by the human
visual system, if we ignore the changes in contrast sensitiv-
ities with retinal eccentricity.35

Bipolar edge representation has been used for image
enhancement for visually impaired people by superimpos-
ing the high contrast edges on the original image.7,24,26,34

Although the binary edge enhancement may have highest
contrast on the contrasting background, the background in
the superimposed image is usually complex, which results
in different contrast in the enhanced image. Bipolar edges
work better than binary edges as they would enhance feature
visibility over both dark and bright backgrounds.6,24,26,34

2.2 Shape from Shading in Bipolar Edge Image
We hypothesize that the bipolar edge image can support bet-
ter object recognition performance than the binary edge
image with normal subjects even with background clutter.
In an image of natural scenes, the luminance difference
across features can be caused by reflection changes within
objects (caused by varying pigmentation) or by shading in
the shaded background or shaded side (or casted shadow)
of an occluding object. Due to the assumption that the illu-
mination source is typically above, objects are expected to
cast shadows below;36 therefore, the bottom side or farther
side of edges is expected to be dark while the upper side or
closer side of edges is bright. This shading effect is lost in
binary edges but is preserved in bipolar edges. Therefore,
bipolar edges provide shape and depth cues that could aid
in object recognition.37

Figure 2 shows bipolar edge results of uniformly pig-
mented objects as an example. In uniformly pigmented
objects, the polarity of the bipolar edge is only affected by
the illumination condition. Using the shading effect, the
bipolarity of edge lines then spontaneously presents the
edge location and relative depth and/or shape of the object,
whereas the binary edge results only show the location of
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edges and cannot distinguish the protruding and recessed
features.

In addition, bipolar edge images can represent more
aspects of features than binary edge images which represent

only edge line location. As seen in Fig. 2(c), bipolar double
lines represent boundaries of two surfaces (or two pigments)
and unipolar lines (white or black single lines) represent pos-
itive or negative cusps that may result from protruding or

Fig. 2 Bipolar edge representation of uniformly pigmented objects: (a) original color image of multiple
sculptures, (b) binary edge image filtered by Canny detector, and (c) bipolar edge image filtered by Peli’s
bipolar edge detector. Due to the uniform pigmentation of the sculptures, only the shape from shading
affects the polarity of edge lines. Bipolar edge lines represent the boundaries between sculptures and
background and may help to segregate the objects from the background. Unipolar lines due to protruding
cusps (bright) and recessed (dark) details on the sculptures also provide depth information. For example,
the squirrel sculpture in the bipolar edge image (c) is much easier to segregate and recognize than the
binary edge image (b).

Fig. 1 Bipolar edge representation: (a) original color image of the target object (champagne flute),
(b) binary edge image filtered by Canny detector,23 and (c) bipolar edge image filtered by Peli’s bipolar
edge detector,6 which represents both the location of a feature and the polarity of luminance on both
sides of the feature. There are also unipolar edge lines of either polarity that represent thin features of
one polarity over a contrasting background (e.g., letters on books, specular highlight on the flute, and the
boundary between books). (d) Binary representation derived from the bipolar edge image (c) by elimi-
nating the polarity information shows the similarity of edge location with the binary edge image in (b). Due
to the double edges converted from bipolarity, the edge lines in (d) look thicker and brighter.
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recessed features. Although the white unipolar lines may also
represent specular highlight, there is no geometrical feature
and shape information.

The contrast polarities of features may be helpful as they
provide more information about the scene. That bipolarity
may be interpreted and is frequently and spontaneously per-
ceived as shape from shading (black lines for shadows and
white lines for lighting surfaces).36 When such perception is
correct, it may be helpful in segregating an object from the
background.

3 Methods

3.1 Dataset
To evaluate the impact of bipolarity on object recognition,
we compared object recognition rates of bipolar edge and
binary edge images by normally sighted subjects. Compar-
ing the object recognition rate between two different repre-
sentation methods required an image dataset that contains
one target object at the center of each image with natural
background clutters. Object recognition performance is
highly dependent on the difficulty of the image dataset.
We were concerned about a possible ceiling or basement
effect limiting our ability to find an effect even if it exists.
For that reason, the object recognition rate in one condi-
tion should be intermediate to enable either an increase
or decrease recognition rate to be found. We selected the
Sanocki et al.’s5 dataset, in which 68 subjects had 41.2%
average object recognition rate across 16 objects using
binary edge images.

The Sanocki et al.’s dataset contains 16 different office
and household items at the center of a scene with varying
levels of background clutter (Fig. 7). The dataset is shared
on data sharing section on our web page (Ref. 38), including
original and edge images. We attempted to follow Sanocki
et al.’s5 method in an effort to achieve similar recognition
rates for binary edge images. The resolution of the color
images in this dataset is 768 × 512 and the images were con-
verted to grayscale images before edge detection processing.

Binary edge images were calculated with the Canny edge
detector23 in Image Processing Toolbox of MATLAB®

R2013b (MathWorks, Natick, Massachusetts). Sanocki et al.5

manually adjusted three parameters (sigma, upper threshold,
and lower threshold) and the experimenter selected those to
achieve a representation of the target object, which included
edges important to the target object while having minimal
noise edges. However, the exact parameters used by Sanocki
et al. were not reported and not available to us. We adjusted
the high threshold and sigma parameters for each image
while the low threshold was set to 0.4 of the high threshold.
We used the few images presented in their paper as a guide
and similarly selected the best representation of each image.
The dataset of our binary edge images is in the left column
in Fig. 8.

The dataset of bipolar edge images (the right column in
Fig. 8) was generated using Peli’s bipolar edge detector.6

This algorithm has no free parameters, other than the pre-
sumed angular image span which we adjusted for each
image in an effort to visually match the level of extracted
features to the binary edge images. The presumed angular
image span affects the level of details represented by the
detected features and the threshold being used. Note that
we did not change the resolution of the image and only

applied a different angular size span, which adjusts the
threshold applied at different scales. Although the bipolar
edge images have the additional information of contrast
polarity, we tried to have the same contents and a similar
level of details in both binary and bipolar edge images with
adjusting the presumed image span in the bipolar algorithm.
We visually compared the location and detail of features
between the binary edge and bipolar edge images. For exam-
ple, the binary image converted from bipolar edge image
without polarity information [Fig. 1(d)] represents only
the location and detail of features, which closely correspond
to the information in the binary edge image except for double
lines and noises. As verification, the second column in Fig. 8
shows the binary dataset converted from the bipolar edge
dataset for comparing the location of features.

To present only one type of processing per object for each
subject, the 16 images were split into two groups of similar
difficulty based on the recognition rates reported by Sanocki
et al.5 Images were sorted by the reported recognition rate,
and image pairs were formed from those with consecutive
recognition rates. One image from each pair was assigned
randomly to one group and the other image to the other
group. The average recognition rate by Sanocki et al. was
41.8% and 40.6% for each group, respectively, as shown
in Fig. 3. Paired sample t-test (p ¼ 0.35) showed that the
two groups were not significantly different. Each subject
viewed binary edge images from one of the two groups
and bipolar edge images from the other group. The group
presentations were counterbalanced between subjects.

3.2 Object Recognition Test
Twenty-six normally sighted subjects (nine men) aged 21 to
67 participated. The study was approved by the Human
Studies Committee of Massachusetts Eye and Ear, and writ-
ten informed consent was obtained from all participants.
Subjects were seated 33 in. from an LCD monitor and the
image width was 8 in. to approximately match the 14-deg
angular image span used by Sanocki et al. We explained
the task to subjects during a training session where we pre-
sented two images (“umbrella” and “camera”) in both binary
edge and bipolar edge versions. We also explained the binary
edges and bipolar edges (the meaning of edge polarity) but
did not suggest the polarity was a cue to depth. The likely
position (i.e., image center) and size (i.e., the biggest object
in the image) of the target objects were indicated to subjects
during training.

The test was performed in a dimly lit room. The 8 binary
edge images were presented first followed by 8 bipolar edge
images. At the beginning of the test in each condition, the
training umbrella image in that condition was displayed
as an example. Each test image was preceded by an audible
alerting beep and disappeared 1 s later, concurrent with a
second beep. The subjects were then asked to name the
object at the center or describe the use of the object if
they could not name it. The operator wrote down the sub-
jects’ responses and provided no feedback. In determining
the response veracity when the name of the object was
not given, describing object usage was valued more than
a general description of the object’s shape. The next
image trial started after the subject pressed any button on
the keyboard.
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4 Results
Average overall object recognition rates for binary and bipo-
lar edge images are given in Table 1. Recognition rates
for bipolar and binary images were 79.3% and 71.6%,
respectively. The modest average improvement of 7.7%
approached significance (p ¼ 0.069). Note, however, that
the recognition rate of our subjects, in the binary edge con-
dition, for 4 of the 16 images was 100% (ceiling effect) pre-
venting any possible improvement (Fig. 3). For three more
images (thus 7 of 16), the recognition rate reached 100%
with the bipolar edge images, which may also represent a
ceiling effect and limit the ability to achieve higher improve-
ment. The ceiling effect was due to our subjects’ recognition
rate with the binary edge images (71.6%) being much higher
than Sanocki et al.’s subjects (41.2%) although we used the
same dataset, edge filtering method, and presentation para-
digm. Our subjects’ results and Sanocki et al.’s results for
recognizing various objects were correlated moderately
(Pearson’s correlation coefficient ρ ¼ 0.53 with p ¼ 0.035).
Note that the recognition rate of a binary edge in the result of
Sanocki et al. was derived from Figure B1 in their paper.5

The results for images in which a ceiling effect was not
suspect, “Watering Pot” (92.3% versus 46.2%, p < 0.01;
Fig. 4) and “Sprinkler” (53.8% versus 0%, p < 0.001;
Fig. 5), showed significantly improved recognition rates
in bipolar edge images.

We further analyzed the results using a binary logistic
regression model in SPSS 11.5. The model correctly classi-
fied 94.9% of the correct recognitions and 78.4% of incorrect

recognitions. Odds ratio (OR) is defined as the ratio of the
odds with a variable to the odds of a reference, where R
is the probability of the binary event (recognized or not),
the complementary probability is 1 − R, and the odds of
an event are defined as R∕ð1 − RÞ. Therefore, where R is
the recognition rate with a variable and R 0 is the recognition
rate of the reference for this variable in this experiment, the
odds of reference are defined as R 0∕ð1 − R 0Þ. Note that
sometimes the odds ratio is regarded as the multiplication
factor of the event, but it is only the case if the probability
of the binary event is very small (then the complementary
probability is ∼1). The odds ratio (OR)

21 was 1.52 and
approached significant level (p ¼ 0.069), indicating that
the odds of recognition in the bipolar edge image are 1.52
times more than the odds of recognition in the binary
edge image when holding all other variables constant This
means the recognition rate in the bipolar edge image
(RBipolar) could be predicted by the odds ratio (OR) and
the recognition rate in the binary edge image (RBinary)
using Eq. (1). This ratio is also limited by the ceiling effect

EQ-TARGET;temp:intralink-;e001;326;306RBipolar ¼
OR

�
RBinary

1−RBinary

�

1þOR

�
RBinary

1−RBinary

� : (1)

For example, if the recognition rate in the binary edge
image was 41.2% as found by Sanocki et al., the recognition
rate for the bipolar edge images would be expected to be
51.6%.

5 Discussion
Bipolar edge images contain more information than binary
edge images because they represent the contrast polarity of
features. The bipolar edge images also distinguish edges
from cusps and mark the polarity of cusp features (protruded
or recessed). Further, the bipolarity can provide three-level
shading information, thus serving as a shape-from-shading
cue. Therefore, we were expecting improved recognition
with the bipolar edge images especially in the limited display
condition of the visual prostheses. The improvement we
found in object recognition with bipolar edges was modest

Table 1 Average recognition rate, %, standard error, SE, and signifi-
cant level, p, between conditions.

Bipolar edge Binary edge
Binary edge

(Sanocki et al.)

Average (%) 79.3 71.6 41.2

SE (%) 2.8 3.1 3.3

p 0.069 NA

Fig. 3 The average recognition rate for each object in the test conditions and in Sanocki et al.5 For
counterbalancing, we divided Sanocki’s dataset into two groups (“Lamp” to “Compact Disc” as one
group, and “Wastebasket” to “Sprinkler” as the other group) based on their recognition results. Our sub-
jects’ recognition rates with the binary edge images were much higher than theirs, leaving little room for
improvement with the bipolar processing (ceiling effect).

Journal of Electronic Imaging 061619-5 Nov∕Dec 2016 • Vol. 25(6)

Jung, Pu, and Peli: Comparing object recognition from binary and bipolar edge images for visual prostheses

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/22/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



and only approached significance. This might be caused by a
ceiling effect. Indeed the recognition rate of 2 of the 3 images
that were recognized by less than 50% of the subjects from
the binary edge images was much better recognized from the
bipolar edges (Figs. 4 and 5). Our interest is in using the
bipolar representation in an imaging system for visual
prostheses.21 In this application, the very limited resolution
will severely restrict recognition, thus eliminating the ceiling
effect, and may show the higher level of improvement.

Improvement in recognition rate might be supported by
better segregation of the object from the background and by
shape from shading cues for uniformly pigmented objects.
As shown in Fig. 4(c), the watering pot’s edges are white
on the outside and black inside because of the contrast
between the dark pigment object and its bright pigment back-
ground. Because black lines can be perceived as shadows
and white lines can be perceived as brighter side, if the object
is surrounded by white inner edge lines with black outer edge
lines the object may be perceived as closer than the back-
ground clutter and vice versa. This effect may help to seg-
regate the object from background clutter in scenes with a
complex background (Figs. 4 and 5).

A uniformly pigmented object, such as the watering pot
and the basket in Fig. 4, may have specular points or lines on
glossy surfaces represented as unipolar edges in the bipolar

edge image (e.g., the decorative pattern on the watering pot
and the curves on the basket). Understanding global illumi-
nation direction may provide a reference to shape from
shading.

Luminance differences caused by a pigment (darker than
background) of the local object could confound the depth
cues (Fig. 6). Due to the black color of an outer briefcase,
the shape from shading is perceived inconsistently in the
bipolar edge. The border between the inside and outside
of a uniformly pigmented briefcase would cause a black
line of a bipolar edge inside the case (due to shading) and
a white line edge in the outer area. However, the polarity of
edge lines pointed by the red arrows in Fig. 6(c) is reversed
due to the black color of the briefcase, which may have
caused a misperception (the interior of the briefcase may
appear higher than it should be) that might affect its recog-
nition rate. If we correct the effect of the pigment to match
the shape from shading in the scene [Fig. 6(d)], the interior of
the briefcase may appear lower than the edge and this may
help to recognize the object.

We did not investigate directly the impact of background
clutter or depth cues from illumination in this pilot study. In
future studies, to reveal the impact of bipolar edges in seg-
regating the object from background clutter, controlling the
complexity of background or the illumination (e.g., direction

Fig. 4 Image of “Watering Pot” that resulted in significant improvement in the bipolar edge image.
Displayed angular size was 14 deg horizontally; that is the size watching this printed figure at
21.7 cm away. (a) Color image of the watering pot in front of wire meshes and other clutter, (b) binary
edge image results that 5 of 13 (40%) subjects identified the watering pot, and (c) the bipolar edges and
cusps act as a depth cue from shading and may have helped segregate the object from the background
clutter. Recognition rate was substantially improved to 92.3% (12 of 13). Note that the images were
scanned from prints resulting in artifactual outside edges that slightly interfere with the presentation.

Fig. 5 Image of “Sprinkler” that wasmuch better recognized from bipolar images: (a) original color image,
(b) binary edge image that no subject was recognized, and (c) bipolar edge image was recognized cor-
rectly in 53.9% (7 of 13 subjects) of presentations. While the location of the object of interest is similarly
apparent in both cases, apparently the structure of the sprinkler is easier to note in the bipolar edge
image. Presumably, this is affected by the pronounced three-dimensional structure notable in the bipolar
image.
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and surface material: glossy or matte) may be necessary. To
reduce the ceiling effect, shorter display times or the use of
lower resolution images may be implemented. In future stud-
ies, we plan to match the binary edge images to the bipolar
edges by extracting the binary edges from the bipolar edge
image [Fig. 1(d) and the middle column in Fig. 8].

Edge enhancements by adding high contrast edge infor-
mation for visually impaired patients have been
proposed.7,26,34,38,39 Both binary edges and bipolar edges
have been employed in such studies.6,7,24,26,34 The approach
has also been implemented in augmented reality where
high contrast edges are added virtually to objects. Only
binary (bright edges) can be added in optical see-through
systems;8,40,41 however, in video see-through systems, bipolar
edges may be used.7,42 A number of studies have demon-
strated a preference for enhanced images, but performance
improvements have not been clearly demonstrated.39 This
paper is a first attempt to compare performance with bipolar
and binary edge images.

All edge images were using the same dynamic range on
the same monitor. The bipolar edges are reproduced with
slightly higher contrast. This is more apparent for the object
of interest in most of the images. The higher contrast which
is apparent in the bipolar images and easier to gauge in the

binarized bipolar images (middle column in Fig. 8), may also
contribute to the better segregation of the object and to the
recognition improvement. This may be an artifact of the
intentional photographic aiming for the center object in
the images of the dataset. In a future study, we will also
plan to test the impact of the bipolar filtering to the object
recognition in low-resolution images close to the current vis-
ual prostheses (up to 1500 electrodes).

Appendix: Image Dataset

A1 Image Dataset
Sixteen image dataset captured by Sanocki et al.5 Sanocki
approved the public release of this dataset in this appendix.
The original dataset is divided into two groups (left and right
columns, Fig. 7) for counterbalancing. Sanocki et al.’s
recognition rates in binary edge image5 are presented in
the bracket.

A2 Different Edge Filtering of Image Dataset
In Fig. 8, the left column shows 16 binary edge image dataset
filtered by Canny edge detector.23 The middle column shows

Fig. 6 Image of “Briefcase” that was better recognized from binary edges than from bipolar edges.
(a) Original color image. (b) Binary edge image calculated using the Canny detector. Average recognition
rate was 53.9% (7 of 13 subjects). (c) The bipolar edge detected by Peli’s method.6 The recognition rate
was reduced to 38.5% (5 of 13 subjects). Contrast polarity in the bipolar edge image is consistent with the
shape from shading for numerous bright objects in the same scene (e.g., papers on the shelves).
However, on the top of the front and right side of the briefcase (pointed by red arrows), the polarity
is inconsistent with shape from shading. (d) The bipolar edge image was manually edited to reverse
the polarity of edge lines pointed by the red arrows. The edited polarity restores the correct shape of
the briefcase and may help to recognize it better (this prediction was not tested). Displayed angular
size was 14 deg horizontally; that is the size watching this printed figure at 31 cm away.
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Fig. 7 The Sanocki et al.’s dataset contains 16 different office and household items at the center of a
scene with varying levels of background clutter. Left and right columns indicates two different groups in
the study. The name of object and recognition rates in Sanocki et al.'s binary edge image are noted.
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Fig. 7 (Continued)
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16 binary images converted from bipolar edge image dataset
filtered by Peli’s bipolar edge detector6 in the right column.
The recognition rates are represented under the image, and
the images are sorted by the recognition rate in the bipolar
edge image. Due to the 2-in. width of the image dataset, 8.1-
in. watching distance from the image will make the same

angular size (14 deg) of the image with the experiment.
In the binary image (middle column) converted from the
bipolar edge image, the edge lines may seem thicker and
to have higher contrast than the binary edges in the left col-
umn due to the double edges from bipolar lines, but the con-
trasts of the edge lines are the same.

Fig. 8 Edge filtering of image dataset. Binary edge image filterd by Canny edge detector (left column),
bipolar edge image filtered by Peli's bipolar edge detector (right column), and binary edge image con-
verted from bipolar edge image (middle column) are presented. The name of object and recognition
rates in our study are noted.
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Fig. 8 (Continued)
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