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ABSTRACT  

In this retrospective we trace in broad strokes the development of image quality measures based on the study of the early 
stages of the human visual system (HVS), where contrast encoding is fundamental. We find that while presenters at the 
Human Vision and Electronic Imaging meetings have frequently strived to find points of contact between the study of 
human contrast psychophysics and the development of computer vision and image quality algorithms. Progress has not 
always been made on these terms, although indirect impact of vision science on more recent image quality metrics can be 
observed. 

1. CONTRAST PERCEPTION 

Human spatial vision is complicated. We know certain facts about it: thresholds vary with spatiotemporal frequency and 
eccentricity, there is masking and adaptation etc., and all these are mediated by band-pass channels that analyze the 
image along different dimensions. It was thought and may still be held by many that by understanding the 
psychophysical properties of contrast perception, and by modeling these more and more precisely, measures of image 
quality could be designed. Results of new algorithms for encoding or compression or transmission or display of 
electronic images could be presented to a simulated human visual system that would then return a verdict on image 
quality consistent with human quality judgments. 
 
The first HVEI meetings in the late 1980’s witnessed some of the early attempts to blend the human contrast sensitivity 
function (CSF) with display modulation transfer functions (MTFs), to yield more-or-less linear measures of the “contrast 
displayed seen”, in an approach dating back to Schade1. The underlying distortion of image quality at the time was a 
bandwidth limitation, i.e. the low-pass and noise characteristics of analog transmission and display systems. It was 
recognized that the low-pass characteristic of the visual system imposed even more of a premium on high frequency 
content2. There were debates over whether the nonlinear transduction of contrast by the visual system required 
incorporation of nonlinear measures in CSF-MTF summation methods 3. The square-root integral method was proposed 
by Barten in 19894, and it remains the best exemplar of this type of direct display/HVS-characteristic synthesis for image 
quality evaluation. 
 
At the same time, there were proposals that models of image quality should aim not to measure the quantity of image 
transmitted, but to discriminate visible differences between ‘ideal’/original and degraded images, bringing image quality 
measurement closer to contemporary contrast psychophysics. These newer models incorporated ideas inspired by the 
multi-scale spatial transform performed by the visual system5,6, and began to acknowledge the intrinsic, efficient 
connection between image statistics and visual/neural encoding 7,8. Methodologies for evaluating subjective image 
quality were being developed against the backdrop of digital image compression development9,10; the first JPEG standard 
was published in 1992. Digital compression posed different problems for image quality assessment, making clear that the 
MTF-CSF approach would not be sufficient, since compression entails changes/artifacts in the structure of images11, not 
just simple uniform contrast attenuation. The dominant problem was soon clear: algorithms sensitive to the changes 
imposed by digital compression were needed. Even as Barten honed his model of basic contrast sensitivity12,13, the need 
was becoming clear for understanding of contrast sensitivity for specific compression artifacts. Watson and Ahumada, in 
particular, measured and modeled contrast sensitivity for compression artifacts14,15. Through the 90’s, there were two 
parallel trends: study of DCT compression artifact visibility, and study of wavelet quantization error visibility14-16. 
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The image quality metrics introduced throughout the 90’s were no longer strictly models of image quality; rather, visible 
difference from an ideal reference image had become the central direction of ‘image quality’18,19. If compression 
squeezes out details or introduces artifacts, what matters is whether or not these changes would be visible to a human 
observer. Convolving an image with a CSF and then compressing the suprathreshold result to approximate human 
contrast sensitivity was no longer sufficient; spatial masking had to be incorporated, where contrast thresholds are raised 
by the presence of higher local contrast. Daly’s Visual Differences Predictor18, having only indirect evidence of how 
masking worked in complex images, incorporated a broad, and in retrospect quite good, educated guess at functional 
pattern masking. HVS-based models of artifact visibility had become ubiquitous by the mid-90's, and HVEI began to 
witness more basic contrast psychophysics aimed at bolstering these models. Important developments included the 
incorporation of contrast gain control processes into pattern masking models14,20, inspired by recent findings in the visual 
neurosciences, and based solidly on measurements of human contrast sensitivity and discrimination.  
 
Contrast is important in a trivial sense, in that images cannot be seen without it - contrast is the carrier or medium of 
visual information. However, above and beyond its importance to image detection, contrast seems to contribute 
qualitatively to perception. It is widely accepted that higher-contrast images look better, as shown in21. This could be due 
to higher contrast images bringing more content above threshold2, or simply due to a psychological association between 
contrast and sharpness22. In a similar vein, it has been suggested repeatedly (cf. Kurihara et al23 for a review) that simply 
adding high-frequency noise to an image improves its perceived quality (sharpness), in some cases, presumably because 
of a perceptual association between high frequency contrast and image sharpness. Over the years at HVEI, perceived 
contrast has been investigated for its links to image quality, although in our estimation, the returns have been of more 
basic than applied value. Arend24 described experiments on perceived brightness and contrast in complex, abstract 
images, while Peli25 explored just what the proper metric might be for measuring the contrast of a complex or even 
simple pattern. In an interesting 1994 paper, Pelah26 described a method for ‘inverting’ the compression of brightness 
performed by the visual system, allowing for an observer to objectively view the 'subjective' image; Peli27 also presented 
his approach to the simulation of contrast perception and a methodology for the evaluation of the validity of such 
simulations. This represented psychophysical testing of the concept underlying many of the visual difference metrics. 
Roufs et al21 produced an interesting study of the relationship between display gamma and subjective image quality. 
However, the connection between these explorations of the subjective properties of contrast perception and the goal of 
image quality computation was always tentative and not explicit.  
 
At the beginning of the last decade, the Modelfest project had just begun28,29, as an attempt to establish a set of standard 
contrast sensitivity measures, for the purpose of regularizing the HVS component of image quality (and other vision) 
algorithms. One goal of the project was that a spatial standard observer (SSO) could be set up based on the Modelfest 
data. New algorithms meant to emulate visual processes should not violate the SSO, while new human subjects (basic 
science) studies should seek to violate the SSO in order to improve it. However, while the Modelfest project yielded 
interesting discussions, it does not seem to have succeeded in setting standards for contrast sensitivity. The main attempt 
at a Modelfest-based SSO was put forward by Watson and Ahumada in 200530. However, most citations of this paper in 
the literature seem to be either regarding empirical statements about contrast sensitivity, or as an example of a modeling 
approach which for whatever reason is not applicable in the context of the citing paper; meanwhile, only a few published 
studies have used the SSO to benchmark performance31 or to supply standard sensitivity values for a model observer32, 
although Watson and colleagues have incorporated the SSO into tools for display metrology33. If the Modelfest project 
has had the impact intended, it has largely been underground. This is curious: if contrast sensitivity is of fundamental 
importance to vision algorithms, why has a centralized contrast sensitivity data resource been so neglected? 

2. IMAGE QUALITY 

Throughout this period, the standard of “image quality” was not particularly scrutinized, except for repeated admissions 
that image quality is a hard problem that must be, for the time being, practically approximated. Undoubtedly, many more 
papers were presented on models and algorithms for measuring or predicting image quality or fidelity, than on the 
question of just what image quality is in the first place. Relatively little work on what should constitute “quality” was 
presented: non-monotonic “no-reference” quality data such as that of Roufs et al21 was never an objective of the various 
quality algorithms that emerged. It seemed to have been settled early on that we all know what image quality is, and that 
observers can therefore judge the distance of a processed image from our knowledge of the ideal image (note 



Heynderickx and Bech’s34 warning against the potentially significant differences between what expert and naive viewers 
think of “image quality”) ‘Full reference’ discrimination algorithms, computing a type of distance between ideal and 
processed images, therefore came to relatively dominate the image quality scene. This willingness to accept measure of 
visible difference may have been driven by the envisioned application of the time. If one wants to control the 
compression at the source before transmission (or storage) the original image is available and may be used in the way 
envisioned by these algorithms to achieve a level or degree of difference visibility. In recent years there is a growing 
interest in reduced- or no-reference measures and no reference measures of quality that necessarily will have to take a 
different direction in incorporating contrast perception.  
 
By the late 90's, attempts were underway to define video quality metrics using similar approaches to what seemed to be 
succeeding with static image quality. Spatiotemporal contrast sensitivity measurements were employed to design video 
quality metrics which quantified visibility of error35,36. A popular idea in the late 90’s was to make use of the visual 
system’s declining-with-eccentricity contrast sensitivity and resolution to conserve bandwidth for digital video 
transmission 33-35, foreshadowing today’s ROI video encoding. The work of the 90’s on visual sensitivity to DCT and 
wavelet artifacts was recapitulated in the following decade with work on the visibility of MPEG artifacts 40,41,42.  
 
The development of image quality metrics explicitly incorporating human contrast sensitivity has clearly slowed; or, 
rather, the basic HVS component has become informally standardized in the field and further incremental advances have 
not been incorporated. The psychophysics seen at HVEI in the recent decade is more likely to relate to attention or 
higher order visual perception. Consideration of multidimensional attentional salience has clearly superseded perceived 
contrast when it comes to modeling of suprathreshold stimulus strength 43. The contrast-based discrimination models 
were, after all, being applied to a very specific question: what discriminable dimensions do humans interpret as 
decrements in quality, or as distance from the ideal image? It appears that precisely addressing this question may not, 
after all, require a more sophisticated or accurate model of the visual system. Although incorporation of attention due to 
saliency may represent a future way of improving coding (ROI coding), that will then require incorporation of attention 
measures into video quality algorithms.  
 
Currently established image quality models such as the SSIM44 and VIF45 incorporate only very abstract and reduced 
HVS components, and are nonetheless very successful and consistent with human judgments of image quality – although 
not more so than HVS-based models (e.g. as shown by Laparra et al46). Instead, these models take the point of view that 
there is information or structure in an image which any system, human or automated, would naturally want to receive; 
they are thus more concerned with computation of the ‘naturalness’ of image statistics, rather than with their 
psychophysical visibility. This is entirely reasonable from a visual point of view: the visual system doesn't care about 
contrast per se, but uses it as a means of getting at the more complex structure of natural images. Must we reproduce the 
means if we want to reproduce the ends of image quality judgments? 
 
Here, a theoretical problem emerges: why do different quality metrics with such disparate structures as the VSNR47, VIF, 
and SSIM to name just a few, all work so well, giving similar results? What do they have in common, and what, if 
anything, do they have to do with human spatial vision? Seshadrinathan and Bovik48 have pointed out that the VIF and 
SSIM structures both can be seen as carrying out divisive normalization that effectively emulate masking, and such 
divisive processes have long been fundamental to image quality metrics (going back to Daly's VDP). Another answer is 
that, however they are constructed, successful quality metrics put a premium on high frequency spatial structure. This 
can be accomplished through incorporation of a contrast sensitivity function based on human performance (as in the 
VSNR and countless other algorithms), but it also suffices simply to add white noise to the input (as in the VIF). This 
may sound like a strange way to emulate the complexities of the human visual system, until we consider that this 
approach – conceiving the CSF in terms of equivalent internal noise – has a long history in psychophysics49. 

3. CONCLUSION 

So, is it important whether or not image quality can be related to contrast perception? Our opinion is that the question 
may have been effectively sidestepped when the decision was made to define 'image quality' as a measure of distance 
between two versions of the same image. For this restricted definition, the higher-order statistics of images, being of 
ultimate importance, seem to swamp the contributions of lower-order statistics. However, a 'complete' standard observer, 



which can make both qualitative and quantitative discriminations, between and within images, will have to incorporate 
machinery for making judgments at many levels, from the sharpness of an edge, to the correctness of color assignment, 
to the gist of a scene. Only with all these parts in place will the ultimate goal of a no-reference image quality metric may 
be within reach. When we have reached this stage, contrast perception will certainly play a role in image quality 
assessment, but it will be just one piece in a large and very complex puzzle.   
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