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Abstract—Subjective evaluation by human observers is usually used to analyze

and select an edge detector parametric setup when real-world images are

considered. In this paper, we propose a statistical objective performance analysis

and detector parameter selection, using detection results produced by different

detector parameters. Using the correspondence between the different detection

results, an estimated best edge map, utilized as an estimated ground truth (EGT),

is obtained. This is done using both a receiver operating characteristics (ROC)

analysis and a Chi-square test, and considers the trade off between information

and noisiness in the detection results. The best edge detector parameter set (PS)

is then selected by the same statistical approach, using the EGT. Results are

demonstrated for several edge detection techniques, and compared to published

subjective evaluation results. The method developed here suggests a general tool

to assist in practical implementations of parametric edge detectors where an

automatic process is required.

Index Terms—Edge detection evaluation, detector parameters, receiver

operating characteristics.

�

1 INTRODUCTION

ALTHOUGH implementations of most edge detectors usually
involve a prior necessary step of parameter selection, no automatic
parameter selection process exists, mainly due to the strong
dependency of the optimal parameter set (PS) of an edge detector
on the input image [1], [2], and the difficulty in assessing edge
detection results for real-world images.

1.1 Edge Detection Evaluation Approaches

Edge detectors are usually evaluated subjectively by observers [1],
[2], [3]. Most of the objective evaluation methods assume knowl-
edge of specific features such as known object boundaries in
simple synthetic images. In such cases, the edge detection can be
quantitatively measured, based on the known ideal detection
considered to be the ground truth (GT) [4], [5], [6]. In real images,
manual specification of the edges was applied to form a GT [7], [8].
A method called local edge coherence measures local properties of
continuation and thinness by examining local neighborhoods
surrounding the detected edge points [9] and was later generalized
to arbitrary surrounding neighborhoods size [10], and to deal with
turning and intersecting edge points [11]. However, an assumption
of the same specific local properties may not be desired by all edge
detectors and edge detection applications. For example, in Peli’s
detector [12], the brighter and darker sides of the edge are taken
into account, and a two-line (bright and dark) edge outline is
desired to represent the two sides.

The method we propose here performs automatic statistical
analysis of the correspondence of detection results produced using
different detector parameters. Statistical measures are used to
estimate the GT considering the trade off between true and false
edges, and to extract the best detector’s PS. The process does not
enforce any criteria regarding the output format of the detector and
avoids both the use of human ratings and manual specification of

the GT and, thus, it provides a general technique for automatic
parameters selection.

1.2 Parametric Edge Detection Methods

Typically, edge detection is performed by enhancing the image
edges with a linear filter that approximates a first or a second
derivative, followed by a decision stage in which a threshold is
applied. An earlier smoothing step is frequently applied using a
Gaussian mask [13]. While the smoothing operation reduces noise
and minor edges, it may cause a distortion of edge locations. The
severity of that distortion depends mainly on the size of the
smoothing operator, and on the spatial shapes of the edges [14], [15],
[16]. Edge enhancement operators that combine smoothing and
derivation can then be a first derivative of Gaussian (Canny [17])
and a Laplacian of the Gaussian (LOG) [18]). Peli [12] developed a
visual model-based edge detection method, where the visual
receptive like filtering channels are used at the enhancement stage,
and the threshold is the contrast sensitivity of the human eye.
Information from different frequency bands (spatial scales) in the
image is combined to produce the final edge detection. The
parameters in Peli’s detector are the center frequency and the width
of its edge enhancing band pass filters.

2 ANALYSIS AND EVALUATION OF EDGE DETECTION

RESULTS

Here, a statistical analysis is performed to both produce an EGT and
then use it to select the detector parameter values for an image. The
edge detection techniques used to demonstrate the proposed
analysis are the classic single-band LOG and Canny, and Peli’s
technique. The proposed method does not compare between
detection approaches, but it performs a general automatic self-
evaluation and parameter selection within a range of examined
detector parameters. It assumes that the best detection of a certain
edge detector in a given image is that which is most consistent with
the verity of detection outputs that can be produced by the detection
algorithm when different parameters are used. As a result of the
edge drifting scale space affects [15], this consistency may be
compromised in some locations in the image when different scales
are produced by different values of a detector smoothing parameter.

First, an EGT is automatically constructed, given a range of
detection results obtained from different detector PSs. Then, the
single PS that provides the best match to the EGT is identified. Since
the best PS depends on the image [1], [2], the results are appropriate
to the specific image and possibly to similar images, but the process
should be carried out again for dissimilar images. The range of
parameters to be tested shouldbe large enough to cover awide range
of detection results from noisy to sparse. Here, we implemented
16 PS combinations, which appear to reasonably cover such a range;
however, higher number of PSs may be used when edge detections
with very fine differences between them have to be evaluated. The
actual parameter values depend on the actual implementation setup
such as the image intensity range and size. The standard deviation of
the Gaussian in the Canny detector here is from 0.7 to 1.3 in steps of
0.2, the high threshold value is from 0.05 to 0.35 in steps of 0.1, and
the low threshold is set to one third of the high. In the LOG detector,
the standard deviation is from 2.5 to 4 in steps of 0.5 and the
threshold is from 0.1 to 0.85 in steps of 0.25. The thresholding here is
performedon the absolute value of thedifference between thevalues
of the LOG from opposite sides of the zero-crossing. In Peli’s
detector, the filters’ center frequencies and bandwidths are from
their original values (1 octave wide and 1 octave apart) to 30 percent
higher, in steps of 10 percent. The LOG and Peli’s detectors are used
for demonstration and analysis, while Canny detector (used also in
[1]) is utilized for comparison to subjective results in Section 3. The
images used here (“Elephant,” “Grater,” “Turtle,” and “Airplane”)
were taken from the Web site [19], and are also shown in [1].
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2.1 Ground Truth Estimation

N edge detection results Djðj ¼ 1; . . . ; NÞ are computed using

N combinations of the detector’s parameters. The results are then

tested for correspondence. A pixel location identified as an edge by

allN detector setupswill have the highest correspondence (N), anda

location identified asanedgebyonlyonedetector setupwill have the

lowest.Ahistogramof the correspondence forN ¼ 16 is presented in

Figs. 1a and 1b for the LOG and Peli methods. In Peli’s detector,

correspondence is accounted only if a bright edge matches a bright

edge or adark edgematches adark edge.Usually, pointswith higher

correspondence belong to more distinct luminance edges and are

considered to be more related to boundaries of main objects in the

image rather thannoiseorminor features thatmayappeardisturbing

to the viewer. Examples of this behavior are presented in Figs. 1c, 1d,

1e, and 1f, where locations with at least 50 percent correspondence

are presented in Figs. 1c and 1d, and locations with less then

50 percent correspondence are presented in Figs. 1e and 1f. These

examples illustrate that statistical correspondence between the

different detections can be used as a basis for a distinction between

true and false identified edges. N detection results produce N

possible correspondence levels, thus, N possible correspondence

threshold (CT) values can be applied to distinguish between points

with correspondence higher, equal or lower than that CT.

2.1.1 Construction of a CT ROC (CTROC) Curve

ROC analysis [20], [21] is applied here to find the best CT that
forms the EGT by considering the tradeoff between increasing the
information and decreasing the noise in the detection result.

To form the CTROC curve, a CT is applied at each of the

N correspondence levels. In each CT level i, points with correspon-

dence above or equal to theCTwill be considered as “edges” and the

otherpointswill be consideredas “nonedges,” formingapotentialGT

(PGTi) for that CT level i. Examples of such PGTis are presented in

Figs. 1c and 1d for CT levels i ¼ N=2þ 1 (50 percent correspon-

dence). Each PGTmap associated with each CT level (PGTi) is then
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Fig. 1. Different correspondence results for the LOG (leftward graphs) and Peli’s (rightward graphs) edge detectors applied to the “Elephant” image. (a) and (b) are the
distributions of edge locations correspondences obtained from the sum of 16 implementations of the detectors with different PSs. (c) and (d) are locations with at least
50 percent correspondence (between 9 and 16). (e) and (f) are locations with less than 50 percent correspondence.



examined against the entire N separate detection results Dj

generating four probabilities for each individual match. Table 1a

presents these outcome probabilities in the GT estimation process

according to statistical decision theory terminology. For each PGTi,

the average of all the probabilities resulting from itsmatchwith each

of the individual detection results j is calculated. Defining an “edge”

pixel as “1” and a “nonedge” pixel as “0”, these averages are:
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where K and L are the dimensions of the image, PGTi1PGTi0 are

the pixels in the PGTi decided as “edges” and “nonedges,”

respectively, and Dj1 and Dj0 are, respectively, pixels detected as

edges and nonedges in the detection j. The expressions inside the

parentheses are described in Table 1a. Each point in the resulting

CTROC curve shows the average match between all the detection

results and the PGTi. The coordinates of this point are the average

TP rate (TPR) and the average FP rate (FPR). The TPR, known also

as sensitivity, is defined as:
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TABLE 1
Definition of the Outcome Probabilities: (a) in the GT Estimation Process and (b) for the Best PS Selection Process,

According to Statistical Decision Theory Terminology

“E” and “NE” denote “edges” and “nonedges,” respectively.



TPRPGTi
¼ TPPGTi

P
; ð5Þ

where the prevalence P is average relative number of positive
detections (edges) in the detection results [20], P¼
TPPGTi

þ FNPGTi
, 8i. The FPR, known also as (1� specificity),

is defined as:

FPRPGTi
¼ FPPGTi

1� P
; ð6Þ

where 1� P ¼ FPPGTi
þ TNPGTi

. The N points in the CTROC plane
will then be: ðsensitivity; 1� specificityÞ ¼ ðTPRPGTi

;FPRPGTi
Þ,

forming the CTROC curve. As the CT level i decreases, TPPGTi

and FPPGTi
increase and, thus, the sensitivity and (1� specificity)

both increase. Therefore, the CTROC curve is monotonically
increasing. Figs. 2a and 2c show the resulting CTROC curves
constructed by implementing a CT at each of the correspondence
levels appear in Figs. 1a and 1b, respectively.

2.1.2 Extraction of the Estimated Ground Truth

Wedefine the best CT as the one that forms a PGT that gives the best
match to the entire edge detection results. This PGTwill be our EGT.
Using the calculated statistical data, we will find the best CT by
implementing twomeasures: the CTROC curve using a diagnosis line
and the Chi-square test [20]. Two such measures are usually used in
areas such as detection theory [21] and psychophysics [20], andmay
give a more reliable evaluation than only one measure.

Measure 1: An ROC curve with a diagnosis line. The optimal
CT forms a point in the CTROC plane that is the closest to the ideal

point (0, 1). First, we define a diagnosis line by connecting the points

(P, P) and (0, 1) on the CTROC plane. Then, the best CT will be at

the intersection of the diagnosis line and the ROC curve [20], and

practically the closest point to the intersection. The diagnosis line is

the line on the ROC plane where FP = FN. When P = 0.5, this line is

the diagonal line (1, 0), (0, 1), but, in the general case, it is the line

(P, P), (0, 1). Implementations of this are shown in Figs. 2a and 2c.
Measure 2: Chi-square. The Chi-square test of the optimal CT

can be written as [20]:

�2
PGTi

¼ ðsensitivity�QPGTi
Þ

ð1�QPGTi
Þ � ðspecificity� ð1�QPGTi

ÞÞ
QPGTi

; ð7Þ

where QPGTi
¼ TPPGTi

þ FPPGTi
. A higher �2

PGTi
indicates a better

CT. The best CT will be the value of i that maximizes �2
PGTi

. Figs. 2b

and 2d show the values of the Chi-square measure for different CT

levels for the LOG and Peli’s detectors, respectively. The results can

be compared to those of the CTROC in Figs. 2a and 2c. It can be seen

that, in these examples, a difference of 1 level occurred. The EGTs

formed by the CTs selected according to the Chi-square test are

presented in Figs. 4a and 4c. Implementations of the two measures

with many other images usually gave close results (mostly zero or

one level difference). The EGT can be used as the final detection.

However, it is often required to implement an edge detection

operation with many similar images. In such cases, the best

detector’s PS can be extracted from one image and then be used

for the others.
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Fig. 2. CT selection measures for the LOG (upper graphs) and Peli’s (lower graphs) detectors implemented on the Elephant image. (a) LOG: The average ROC curve

(across the 16 PSs) evaluated from 16 CT levels at the 16 correspondence levels; the best CT level according to the intersection between the diagnosis line and the ROC

curve is 5 (31 percent correspondence). (b) LOG: The Chi-square measure for the best CT level shows a maximum at CT level 4 (25 percent correspondence). (c) Same

as (a), but for Peli’s detector. According to the CTROC the best CT level is 7 (38 percent correspondence). (d) Same as (b), but for Peli’s detector. According to the Chi-

square measure, the best CT level is 6 (31 percent correspondence).



2.2 Extraction of the Best PS

The best PS of the detector is the one that forms the detection that

gives the best match to the EGT. The best match is decided here also

according to ROC and Chi-square measures. The resulting matches

between each detection and the EGT are presented in the PS ROC

(PSROC) plane. The formulations of the TPR and the FPR here are

similar to (5) and (6), respectively, but with the probabilities

TPDjEGT, FPDjEGT, TNDjEGT, and FNDjEGT, described in Table 1b.

The potentially best points here are those points that no other point

has both better sensitivity and specificity [20]. These points can be

connected forming an outer bound with regard to the other points.

We will term this line: the “PSROC curve.” The best PS point in this

case is the point on the PSROC curve that is the closest to the

diagnosis line. Examples for that are shown in Figs. 3a and 3c. A

similar concept is the Pareto front [22], which is the outer bound that

connects the points that represent the best parameters for

segmentation algorithms in a fitness-cost space.

The Chi-square measure in this case, �2
DjEGT

, will be similar to

(7), but with QDjEGTi
instead of QPGTi

, where QDjEGTi
¼TPDjEGT

þFPDjEGT. The match results according to the Chi-square criterion

appear in Figs. 3b and 3d, where the highest bars indicate the best

PSs. Each of these sets is one of the potentially best sets according to

the PSROC measure. The edge detection results formed using the

selected parameters are shown in Figs. 4b and 4d.

3 COMPARISON TO SUBJECTIVE PARAMETER

SELECTION RESULTS

Results of the proposed objective technique are compared here to

subjective parameter selection results [1], using the Canny detector

employed in both works. From the 28 images used in [1], we have

found two pairs (“Elephant,” “Grater”) and (“Turtle,” “Airplane”)

that fitted two criteria according to the results in [1]: 1) for each pair

the selected PSs were the same, but were different between the two

pairs; 2) the differences between the two PSs had to be effective in

termsof the change in the“noisiness” of thedetection.Anoneffective

difference would be, for example, a higher standard deviation (less

noisiness) and a lower threshold (more noisiness). Although the

actual parameter values varies due to different implementations of

the algorithm, the automatic technique selected the same set for the

first two images and another same set for the second two (according

to both ROC and Chi-square measures), similar to the results of the

subjective evaluation. Furthermore, in both the subjective and

objective determinations, the difference between the two selection

results was from a noisier-bound set for the first pair of images to a

quieter-bound one for the second pair. The detection results using

the selected PSs presented in Fig. 5, show a high similarity to the

results preferred by the viewers presented in [23].
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Fig. 3. PS selection measures for the LOG (upper graphs) and Peli’s (lower graphs) detectors. (a) The match points in the ROC plane for all the examined PSs. The

numbers near the points are the standard deviation and the threshold parameters. The potentially best PSs are connected forming the PSROC curve, and the best set is

(2.5, 0.6). (b) Chi-square measure for the match results between the different detections and the EGT shows a maximum for the parameters (2.5, 0.6). (c) Same as (a),

but for Peli’s detector. The numbers near the points are the numbers with which the detector’s the center frequency and the frequency bandwidth of the enhancement

filters were multiplied. The best set is (1.2, 1.1). (d) Same as (b), but for Peli’s detector. The best PS according to the Chi-square measure was (1.2, 1.1).



4 DISCUSSION

The EGT and the best detector’s PS depend on the range of the

parameters initially used to produce the various detections. The

range of the parameters should therefore extend from forming
very noisy detections to forming very sparse ones. This require-
ment is a drawback since the method is thereby not fully
automatic, however, this requirement is less manually demanding
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Fig. 4. Resulting edge maps for the LOG (upper row) and Peli’s (lower row) detectors. (a) and (c) The EGT using the selected CT according to the Chi-square measure.

(b) and (d) The edge detection using the selected PS.

Fig. 5. Detection results using the Canny detector with the automatically selected PSs. The images “Elephant,” “Grater,” “Turtle,” and “Airplane” were taken from [19], and

are also shown in [1]. These results can be compared to results presented in the Web site [23] with the PSs selected in [1].



than finding the best PS as the proper range can be preselected
easily for most images. The purpose of the method developed here
is to improve the practical use of parametric edge detectors and to
assist with the uncertainty associated with detector parameter
selection. The method may be used to evaluate detections from
different edge detectors only if these detectors aim to the same
output format. Otherwise, noncorrespondence between detections
of different detectors may be a result of the dissimilarity between
the desired edge detection formats. Additional information and
results of this work may be found on our Web site [24].
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