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Purpose: Efficacy of current visual prostheses in object recognition is limited. Among
various limitations to be addressed, such as low resolution and low dynamic range,
here we focus on reducing the impact of background clutter on object recognition.
We have proposed the use of motion parallax via head-mounted camera lateral
scanning and computationally stabilizing the object of interest (OI) to support neural
background decluttering. Simulations in head-mounted displays (HMD), mimicking
the proposed effect, were used to test object recognition in normally sighted subjects.

Methods: Images (248 field of view) were captured from multiple viewpoints and
presented at a low resolution (20 3 20). All viewpoints were centered on the OI.
Experimental conditions (2 3 3) included clutter (with or without) 3 head scanning
(single viewpoint, 9 coherent viewpoints corresponding to subjects’ head positions,
and 9 randomly associated viewpoints). Subjects used lateral head movements to
view OIs in the HMD. Each object was displayed only once for each subject.

Results: The median recognition rate without clutter was 40% for all head scanning
conditions. Performance with synthetic background clutter dropped to 10% in the
static condition, but it was improved to 20% with the coherent and random head
scanning (corrected P ¼ 0.005 and P ¼ 0.049, respectively).

Conclusions: Background decluttering using motion parallax cues but not the
coherent multiple views of the OI improved object recognition in low-resolution
images. The improvement did not fully eliminate the impact of background.

Translational Relevance: Motion parallax is an effective but incomplete decluttering
solution for object recognition with visual prostheses.

Introduction

An estimated 260,000 individuals in America are

functionally blind.1 Blind individuals use mobility
aids, such as long canes and guide dogs, and access

text through braille and computer programs that

convert text to speech. However, these tools do little
in aiding search for and recognition of objects. Visual

prostheses in the form of retinal implants, such as the
Argus II2 and Alpha IMS,3 reportedly provide

rudimentary vision to assist with daily tasks, includ-

ing letter identification2 and shape detection, locali-
zation, and recognition.3 Sensory-substitution devices

(SSDs), such as the BrainPort V100,4,5 a tongue-

stimulation device, are also being developed to
similarly represent objects to blind users.

Most visual prostheses and SSDs use video
cameras to capture images and convert them into a
format appropriate for the device. These final
‘‘images’’ are restricted by the limitations of the
devices and the physiological interface. They often
have low spatial resolution, low dynamic range
(number of distinguishable gray levels), and narrow
field of view (FoV). For example, Argus II has 60
electrodes (10 3 6 resolution) covering a retinal FoV
of approximately 188 3 1186 with very few gray levels.
The BrainPort V100 and V200 devices differ in their
physical controls, but both have similar technical
specifications: 400 electrodes (20320 resolution) with
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few gray levels.4 Their camera FoV defaults to 248 3

248, and can vary from 488 3 488 to 28 3 28 using
digital zoom. The digital zoom out further reduces
image quality. With full-field images the camera auto
exposure is appropriate for the whole image, but
using digital zoom to simply crop a smaller portion of
the image frequently results in low contrast.7 Such
low-contrast features would be further degraded by
the resolution reduction to 20 3 20. Low resolution
and low dynamic range alone lead to images that may
be difficult to interpret even when viewed with normal
vision.8

These limitations further hinder a user’s ability to
recognize objects using these devices when the object
of interest (OI) is in front of cluttered background.
Even with normal vision, clutter can interact with the
features of a target item, thus reducing performance
in object recognition.9 This can be more severe with
the poor image quality of prosthetic vision. The
difficulty in interpreting local features impedes the
separation of target signals from surroundings.10

Object recognition results reported with visual pros-
theses are often demonstrated under unrealistic
conditions where only a small number of objects are
presented to subjects and are placed over a highly
contrasting, uniform (uncluttered) background that
also reduces light reflections and shadows.3,11,12 These
results may be overstating the device performance
that can be expected in a real-world environment.

Jung et al.10,13 proposed a light-field–based meth-
od that separates an OI from background clutter and
removes the clutter from images. Other techniques to
achieve background decluttering include a video
processing system based on optic flow,14 and methods
using thermal imaging (Dagnelie G, et al. IOVS.
2016;57:ARVO E-Abstract 5167) or stereo cameras
(Dagnelie G, et al. IOVS. 2017;58:ARVO E-Abstract
4686). Jung et al.10 further showed the effectiveness of
decluttering in improving object recognition with
simulated prosthetic vision. Interestingly, they also
observed that when subjects were unable to recognize
object images, they engaged in head rotation and
lateral translation as if they were trying to separate
object from background intuitively from multiple
viewpoints,10 though this was not effective with static
images. An increase in head movements was also
observed in a visual acuity task with simulated
prosthetic vision.15 These head movements suggest
that normally sighted subjects were actively trying to
maximize visual information as they might do when
viewing objects naturally.

Users of simulated prosthetic vision reportedly

benefited from an expanded effective FoV and
improved depth perception by using lateral head
movements.16 A change in the observer’s viewing
position may create motion parallax. This motion
parallax causes different image movements for objects
at different distances, creating cues that may aid in
object and ground separation.17 A prosthetic vision
device that can capture these characteristics of motion
parallax may be useful. Schiller18 discussed the
usefulness of motion parallax as a depth cue for
visual prostheses. He assumed that video-based visual
prostheses with head movement provide similar
motion parallax effects as experienced in normal
vision. However, we noted that retinal image motion
in retinal prostheses with head-mounted video cam-
eras was different than the retinal image motion under
natural viewing with similar head motions.13,19

Naturally, compensatory eye rotations based in part
on vestibulo-ocular reflex stabilize the retinal image of
an OI on the fovea in motion parallax.

When using the head-mounted camera, the
camera continues to be pointed generally straight
during lateral head movements. It does not rotate
toward the OI as the eyes do during similar head
movements with normal vision. As a result, both the
OI and the background move across the visual field
(though not at the same speed), which diminishes the
ability to separate the OI from the background.
Additionally, the OI movements may carry it out of
the narrow FoV of the device. Therefore, while
trying to use motion parallax to facilitate object
recognition in visual prostheses, it is important to
stabilize the OI at the center of the image. Previous
research has considered similar OI stabilization
during rotational head movements to incorporate
the vestibulo-ocular reflex into the prosthesis simu-
lation20: eye tracking was used to display eye-
contingent information with Argus II recipients.
Their results indicated that the use of eye and head
rotations together reduced head movements and
improved the hand pointing precision of Argus II
users. However, fixating during lateral head shifts
(rather than rotations) requires the user to locate the
OI within a complex real-life scene, a difficult task
for a blind eye. We have proposed a computational
solution intended to bypass this difficulty and to
provide an OI-stabilizing mechanism, similar to
fixation in normal vision.13,21 In this study, we
tested the above principle using a simulation of the
proposed motion parallax method and evaluating
subjects’ ability to separate an OI from background
and to recognize objects in low-resolution images.
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General Methods and Materials

The impact of motion parallax on object recogni-
tion was measured using low-resolution (20 3 20)
images of objects. To simulate the effect of our
proposed system, we created a dataset of object
images simulating those that would be generated by a
visual prosthesis equipped with our system. Our
images were of higher quality than those currently
provided by most visual prostheses or SSDs. For
example, our images had high dynamic range and
therefore provided better image quality than the
typical phosphene vision provided by current devices,
such as the Argus II. We tested images of better
quality to investigate the effect of motion parallax
with OI-stabilization prior to trying to implement it
with more degraded images. Also, this concept is not
designed for current visual prostheses, but future
iterations of devices, many of which are increasing
their resolutions to even higher ranges than those
demonstrated here.3

Our images were captured, either with or without
background clutter, using the BrainPort V200 system,
which generates simulated prosthetic images with low
resolution (20 3 20) but uses full dynamic range (256
levels of gray). Images were captured from nine
viewpoints with the OI maintained at the center of the
camera FoV, resulting in the distant background
clutter changing positions within the FoV. We
conducted two experiments. In a Clutter Complexity
experiment, we first evaluated how backgrounds of
varying complexity levels affect object recognition in
static low-resolution images simulating visual pros-
theses. In the main Motion Parallax experiment,
where the level of background complexity for each
object was selected from the Clutter Complexity
experiment, normally sighted subjects used lateral
head movements to explore and try to recognize the
OI. Our goal was to see whether motion parallax by
decluttering (separating) the background from the
object improves new object recognition.

Image Set Preparation

A grayscale image dataset of 35 familiar objects
(such as a mug, spray bottle, and teddy bear) was
collected using the BrainPort V200 camera and the
electrode stimulation view provided with the Brain-
Port to simulate low resolution of visual prosthesis.
Objects were placed in front of synthetic background
images at six complexity levels and photographed
from nine laterally separated viewpoints (Fig. 1). The

images were captured with the OI within arm’s reach
distances from the camera and the synthetic back-
ground images were all located 115 cm from the
BrainPort V200 camera (Fig. 1a). The FoV of the
camera was set at the system default of 2483248. The
OIs were roughly at the center of the image and
covered a similar portion of image area (158–208 in
diameter). The distances between the object and the
camera were 30, 50, or 70 cm, depending on the
object’s size (ranging from 10–30 cm), and the
numbers of captured objects at these distances were
7, 12, and 16, respectively. A full list of the objects
with their displayed distances and the captured
images with various backgrounds can be found in
the Supplementary Appendix – Object images
captured with BrainPort V200 camera. The Brain-
Port V200 provides a high-resolution (480 3 480)
camera view and a simulated prosthetic view with a
true resolution of 20320 that is up-sampled to 4803

480 pixels and low-pass filtered to reduce the pixel
edge artifacts (Fig. 1b). All images had a full
dynamic range of 256 gray levels (as in the BrainPort
simulation).

To allow rotation and lateral position shift of the
BrainPort V200 camera, it was mounted on a
mannequin head that was connected to a rotation
optical stage located on an optical rail. Both the
BrainPort camera translation and corresponding
rotation to aim at the OI were calibrated to achieve
imaging consistent with motion parallax in normal
vision, in which the OI is fixated. The nine viewpoints
provided reasonably smooth transitions when dis-
played in response to subjects’ head movements. The
lateral distance between neighboring capture posi-
tions was 3 cm, providing an overall shift of 12 cm on
either side from the central viewpoint. The rotation
re-centered the OI following the lateral shift. For an
object placed 50 cm from the camera, the angular
rotation between each viewpoint was about 38. For
objects placed 30 cm from the camera, angular change
between consecutive positions was between 48 and 58,
and for objects at 70-cm distance, angular change was
28 to 2.58.

Schematic images generated with the dead leaves
model mimicking natural image statistics22 were used
as background stimuli displayed on a large television
screen (that covers the entire FoV from each
viewpoint). They represented natural scene clutter
while permitting controlled complexity. To quantify
the background complexity, we first analyzed the
distribution of edge density in 20,050 natural images
(with a resolution of 256 3 256) from the MIT Places
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2 dataset.23 For each image, edge pixels were found
using the Sobel method with a fixed threshold (0.02),
and then the number of edge pixels divided by the
total number of image pixels was calculated as edge
density.9,24,25 Figure 2 shows examples of the natural
images at various edge density levels with correspond-
ing examples of dead leaves images matched in edge
density. Six background complexity levels were
selected to cover a range of natural scene clutter,
including the edge density level at 0% (blank), 5%,
10%, 15%, 20%, and 25%. Given the limited display
resolution (20 3 20), clutter complexity may appear
similar when edge density of the original high-
resolution images was 19% to 21% and 24% to 26%
(Fig. 2 last column). A set of 40 dead leaves stimuli at
the television resolution (1920 3 1080 pixels) were
randomly generated and verified for each of the five
complexity levels with clutter.

Two experiments were conducted using the cap-
tured low-resolution images. The purpose of the first
experiment was to establish recognition of new
(previously unseen) objects as a function of back-
ground clutter complexity using static images. The
crowdsourcing results from the first experiment,

henceforth referred to as the Clutter Complexity
experiment guided the selection of background
complexity for our second experiment. The Motion
Parallax experiment studied the impact of motion
parallax on object recognition in clutter. The Massa-
chusetts Eye and Ear Human Studies Committee,
Boston, MA approved all experiments and proce-
dures. The Committee exempted the crowdsourcing
Clutter Complexity experiment. All participants in the
Motion Parallax experiment signed a written in-
formed consent before starting the experiment. All
research adhered to the tenets of the Declaration of
Helsinki.

Clutter Complexity Experiment

Crowdsourcing of Object Recognition as a
Function of Background Clutter Complexity

Testing was conducted online by crowdsourcing
using Amazon Mechanical Turk (MTurk)26,27 to
effectively reach a high number of participants. To
prevent any learning effect with repeatedly seen

Figure 1. The capture of simulated prosthetic images. (a) Top view of the physical setup showing the nine camera positions on the left,
which are 3 cm apart. For an object set 50 cm from the camera, each 3-cm lateral shift requires approximately 38 rotation to re-center the
OI. For the purpose of this figure, the dead leaves background is cropped to cover the FoV of camera position rays 1, 3, and 5. (b)
Captured image examples from nine lateral viewpoints from the left to the right.
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objects, we ensured that each subject would only see
each object once. Static images taken from the
central viewpoint (Fig. 1) were used. For each object,
the following seven experimental conditions were
tested: six conditions with 20 3 20-resolution
simulations of the object in front of six levels of
background complexity (0%, 5%, 10%, 15%, 20%,
and 25%), and a control condition with the high-
resolution images (480 3 480) without background

clutter (Fig. 3). To ensure each individual subject
saw each object only once, the 35 3 7 ¼ 245 images
were split into seven sets, and each set contained 35
images, one for each of the 35 objects taken at only
one of the seven experimental conditions. Each of
the seven sets was presented to 10 subjects to acquire
an average recognition rate for each object 3

background combination. A total of 70 subjects
were required.

Figure 3. Example images in Clutter Complexity experiment. Images with the running man sculpture as presented in the following
seven experimental conditions: from left to right, high-resolution control without background clutter and low-resolution images with 0%,
5%, 10%, 15%, 20%, and 25% background clutter complexity.

Figure 2. Natural image examples with various ranges of edge densities and the corresponding examples of the dead leaves
backgrounds in high and low resolutions. The low-resolution images of dead leaves (20 3 20) are low-pass filtered, as in the BrainPort
simulation, to reduce pixel edge artifacts.
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The Unique Turker service (http://uniqueturker.
myleott.com/) was used to limit each subject to one
set and each set of images was published separately.
Because the presented images were intended to
subtend approximately 208 diagonally, subjects were
guided to calibrate the display image size by matching
an oval-shape displayed on the screen with their
closed fist at arm’s length and asked to maintain their
sitting distance from the monitor over the course of
the task. Four practice trials with objects different
from the 35 testing objects were followed by the 35
experimental trials in random order across subjects (1
trial for each object in 1 of 7 conditions). Each image
was presented for up to 10 seconds, allowing sufficient
time for viewing, and then subjects responded by
typing the name of the object without a time limit and
pressed ‘‘Enter’’ to move to the next trial. No
feedback was given following the trial. If words of
less than three letters were submitted, the response
was rejected, and the subject was asked to re-enter the
object name. Subjects were encouraged to guess if
they did not recognize the object. Each subject was
compensated $1.50 if they completed all 35 trials and
provided reasonable responses, especially in the high-
resolution control trials where objects should have
been more easily recognizable (see the first image in
Fig. 3).

Three experimenters, who tried to hold consistent
criteria across the conditions and subjects, scored
subjects’ typed responses independently. When
scoring responses, experimenters used their best
judgment about whether a response was correct,
and also considered the way the objects might have
looked to viewers in the images. If a response was
identical with our name for the object, it was marked
correct. If a response was mostly correct but
included some additional details (e.g., ‘‘man in hat’’
for the ‘‘hat’’) it was scored as correct because the hat
sat on a mannequin head in the image. Subjective
judgment was necessary if an object looked more
ambiguous in an image (e.g., the football was round/
oval shaped with little to no texture detail in the low-
resolution image so common responses were ‘‘lem-
on’’ or ‘‘egg’’) in which case the scorers had to make
a decision based on how closely the image resembled
the response. To account for disagreement between
scorers, a response was marked correct if it was
scored as such by at least two of the three scorers.
The recognition rate for each object under each
condition was calculated as the number of subjects
who successfully recognized the object divided by 10,
the number of subjects who were tested with each

object and condition. The effects of background
complexity levels on recognition rates were analyzed
using a nonparametric method, the Wilcoxon signed-
rank test,28 given the nonnormal data distribution.
The symmetry assumption of the Wilcoxon signed-
rank test was evaluated using the MGG test (a test of
symmetry about an unknown median).29 The Bon-
ferroni correction was used to correct for multiple
comparisons.

Recognition Rate

All 70 MTurk subjects received the full compen-
sation. The median recognition rate across the 35
control images (the recognition rate for each image
was calculated across the subjects) at high resolution
(480 3 480) without background clutter was 100%.
The decrease in resolution to 20 3 20, without
background clutter, reduced the median recognition
rate in half to 50% (Fig. 4). Comparing the
recognition rates of the high-resolution images with
those of the low-resolution images, the P value of a
paired, one-sided Wilcoxon signed-rank test was less
than 0.0001 (z ¼ 4.83, the MGG test for symmetric
differences P ¼ 0.69). Among the conditions at the
low resolution (20 3 20), when comparing with the
no-clutter condition, the 5% background complexity
reduced the median recognition rate from 50% to 30%
(z ¼ 2.42, Bonferroni corrected P ¼ 0.039, symmetry
test P¼ 0.37). When the background complexity was
further increased to 20%, the median recognition rate

Figure 4. Median recognition rates with different resolutions and
background clutter complexities. Background clutter reduces the
recognition rate in low-resolution images, though the effect was
smaller than the effect from the resolution change (from 480 3 480
to 20 3 20 both without background clutter). The P values were
calculated using the Wilcoxon signed-rank test with paired
samples and were Bonferroni corrected for multiple comparisons.
Error bars represent the interquartile range.
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reduced from 30% to 10% (z ¼ 3.83, Bonferroni
corrected P ¼ 0.0003, symmetry test P¼ 0.16).

The Clutter Complexity experiment was used to
select one level of background complexity for each
object to be used in the Motion Parallax experiment
(the recognition rates for each object are shown in
Supplementary Appendix Fig. A1). To allow room
for improvement, the complexity level that led to the
lowest recognition rate was selected for most of the
objects for the next experiment. For those having
comparable recognition rates at multiple background
complexity levels, one complexity among the multiple
levels was randomly selected. The selected back-
ground complexity level for each object is indicated
with a filled black circle in Supplementary Appendix
Figure A1.

Motion Parallax Experiment

Impact of Motion Parallax on Recognition

The Motion Parallax experiment was designed to
test whether the motion parallax with simulated OI
stabilization would improve object recognition in a
cluttered environment.

Apparatus

The Oculus Rift (Oculus VR, Irvine, CA) head-
mounted display (HMD) was used to track subjects’
lateral head positions and to display the correspond-
ing precaptured images. The virtual world displayed
in the Oculus Rift was set to simulate the physical
environment where the image set was captured. The
images subtended 248 of visual field in the Oculus Rift
to match default FoV in the BrainPort. The image
area surrounding the displayed images was shown in
black. The same images were displayed to both eyes,
and thus there was no depth information. This also
prevented a potential rivalry between the test image
and the blank dark screen if only one eye was
presented with the image. The measured lateral head
movement ranged 612 cm from the central position
corresponding to the middle viewpoint, and every 3-
cm interval for the head positions corresponded to
one viewpoint. Hysteresis control was applied to
reduce the effect of tracking noise. The head rotations
were not tracked, and only the lateral positions
affected the change in image presentation. Images
were presented in a small FoV, and no obvious benefit
could be achieved through eye scanning. Therefore,
subjects completed the task without enforced fixation,
and eye movements were not tracked.

Experimental Design

The same 35 objects used for the Clutter Com-
plexity experiment were used. Two factors were
included in the experimental design, (1) the back-
ground clutter (with or without), and (2) the head
scanning conditions (static, coherent, or random
scanning). For the conditions without background
clutter, the images displayed were taken in front of a
uniform gray background; for the conditions with
background clutter, one background complexity with
low recognition rates selected in the Clutter Com-
plexity experiment was used.

Three head scanning conditions were tested—static
from a single viewpoint, coherent nine viewpoints
corresponding to subjects’ lateral head positions, and
nine viewpoints randomly displayed. The images
displayed for the static condition were from the
central viewpoint regardless of subjects’ head move-
ments. The condition with coherent motion parallax
cues was displayed from the pre-captured nine-
viewpoint images corresponding to subjects’ head
positions. Therefore, subjects would perceive view-
point shifts coherent with their head movements. In
the random scanning condition, the image presented
at each head position was selected randomly from the
nine-viewpoint images: the association between the
image viewpoint index and the head position were
preset through random sampling without replace-
ment. The associations were thus constant across
subjects but not objects. The overall parallax effect of
the OI being stabilized and the background moving
was maintained in the random scanning condition,
but neither the background image movement nor the
multiple viewpoints of the OI were coherent with the
head movements. A total of six experimental condi-
tions (2 backgrounds 3 3 head scanning conditions)
were presented as shown in Supplementary Movie S1,
QuickTime movie file.

Procedure

Sixty normally sighted subjects (12 males, average
age 27), recruited from the Schepens Eye Research
Institute and the New England College of Optometry
completed the object recognition task (10 subjects per
condition for each object). The subjects were first
screened to ensure visual acuity of 20/30 or better
with habitual correction (30 subjects were wearing
contact lenses) and a visual field wider than 508 FoV.
Subjects passed the Mini-Mental State Examination
(MMSE). Subjects were seated, fitted with the HMD,
and underwent calibration to ensure the HMD was
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within the field of the Oculus lateral movement
sensor. The experimenter demonstrated the lateral
head movement that would induce the motion
parallax and encouraged subjects to use this motion
when viewing images.

The first six trials were practice trials, one for each
experimental condition, and were followed by 35 test
trials, one for each test object. The objects presented
in practice trials were different from the 35 test
objects. Each subject only saw each test object once.
Each object under each experimental condition was
seen by 10 subjects (thus 60 subjects were required for
the 6 experimental conditions). The conditions were
evenly and randomly distributed for all subjects—
similar number of trials for each experimental
condition. The order of object presentation was
random across subjects.

A blank screen with the trial identification number
was displayed at the beginning of each trial, and the
subjects were instructed to initiate the image presenta-
tion when they were ready (by pressing a button on the
Oculus handheld remote). They could take as long as
they needed to inspect the images with their lateral
head movements. The displayed image sequence and
the corresponding time interval for each image were
logged to monitor the subjects’ head movements when
exploring the images. Once they decided on the name
of the object, they pressed the Oculus remote button
again to end the image presentation, which recorded
the response time for the trial. The subjects then
verbally reported the name, which was recorded by the
experimenter. The subjects were encouraged to guess
and only to provide one answer that they thought was
the most plausible. No feedback was given.

Analysis

The recorded naming responses were independently
scored by three experimenters, as done for the Clutter
Complexity experiment, and responses scored as
correct by at least 2 out of 3 experimenters were coded
as correct. An average recognition rate for each object
under each condition was the number of subjects who
successfully recognized the object divided by 10. The
recognition rates among the six experimental condi-
tions were analyzed using the Wilcoxon signed-rank
test and the Bonferroni correction for multiple
comparisons was applied. For the response time, a
two-way repeated measures ANOVA (background
conditions and scanning conditions as the within-
subject factors) was conducted. The post hoc contrasts
were Bonferroni corrected for multiple comparisons.
Fourier analysis was conducted on the displayed image

sequence (as quantized head movement data) to
analyze the head movement patterns. The Wilcoxon
signed-rank test was used to compare the head
movement pattern among the experimental conditions.

Recognition Rate and Response Time

For individual subjects, the average recognition
rate across the objects was 33%. Of the 35 objects, the
median number of recognized objects was 11.5 (range,
3–22). We calculated a bounded range of valid
recognition rates by adding 1.5 times the interquartile
range (IQR ¼ 5.5) to the third quartile (14) for the
range maximum and subtracting the same modifier
from the first quartile (8.5) for the range minimum.
Because no subject had a recognition rate outside
these bounds (0.25–22.25), no subject was excluded as
an outlier in the analyses.

Next, we verified that when provided with the
same 20 3 20 images, responses collected in the
Clutter Complexity and the Motion Parallax exper-
iments were correlated (Fig. 5), despite the different
interfaces and subjects (MTurk crowdsourcing and
HMD, respectively). Specifically, the recognition rates
of conditions with no clutter and the selected level of
complexity from the Clutter Complexity experiment

Figure 5. Recognition rate of the same images collected in the
Clutter Complexity (x-axis) and the static condition of the Motion
Parallax (y-axis) experiments. The blue triangles are from the no
clutter and static condition, and the red circles show the recognition
rates with the cluttered background. Each point represents the
responses to one object under the corresponding condition (70
points in total). The points may overlap indicating the same
recognition rates among the objects. The darker the icon is, the
more points are overlapping. For example, the majority recognition
rates from the cluttered condition are either 0% or 10%. The
recognition rates in the two experiments are significantly correlated.
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were compared with those in the static conditions
from the Motion Parallax experiment. When there
was no clutter (blue triangles in Fig. 5), the coefficient
of determination (R2) between the recognition rates in
the two experiments was 0.80 (P , 0.0001). With
clutter (red circles in Fig. 5), over 80% of the objects
have a recognition rate smaller than 20% (either 10%
or 0); the R2 here was weaker (0.35), but the
relationship was still significant (P ¼ 0.040).

Figure 6a shows median recognition rates across
the 35 objects for each experimental condition (results
for the individual objects can be found in Supple-
mentary Appendix Fig. A2). Because the normality
assumption was violated by the recognition rate data,
the Wilcoxon signed-rank test was used for statistical
analysis. The recognition rate was lowest for the
condition with static cluttered images (median 10%),
while all conditions without background clutter
showed a median recognition rate of 40%. Back-
ground clutter significantly reduced the recognition
rates, among the static conditions (symmetry test P¼
0.88), the approximate value of the z-statistic was 4.64
with Bonferroni corrected P , 0.0001; for the
coherent head scanning conditions (symmetry test P
¼ 0.97), the z-statistic was 3.64 with corrected P ¼
0.0012; the z-statistic was 3.71 with corrected P ¼
0.0001 for the random head scanning conditions
(symmetry test P ¼ 0.39). With background clutter,
both head scanning conditions showed improved
recognition rates in comparison with the static
condition (median recognition rate 10%): coherent

scanning improved the median recognition rate to
20% (z¼ 3.28, corrected P¼ 0.005, symmetry test P¼
0.47); and with the random scanning, the median
recognition rate increased to 20% (z¼ 2.55, corrected
P ¼ 0.049, symmetry test P ¼ 0.90). No significant
difference in performance was found between the
clutter coherent (median recognition rate 20%) and
random viewing (median 20%) conditions (z¼ 0.44, P
. 0.05, symmetry test P¼ 0.45). Without background
clutter, the recognition rates were not significantly
different among the three head scanning conditions,
the median recognition rates were 50%, 40%, and 40%
for the static, coherent, and random scanning
conditions, respectively (P . 0.5 for all pairwise
comparisons). An alternative analysis calculating the
recognition rate for each subject across the objects,
and thus treating the repeated measures over subjects
is provided in Supplementary Appendix – Alternative
analysis of recognition rates, which led to the same
conclusion.

The response times across the 10 subjects for each
object and experimental condition were averaged for
statistical analyses (Fig. 6b). On average, 42 seconds
were needed for each trial; subjects spent time to move
laterally back and forth to view images from various
viewpoints as instructed. A two-way repeated measures
ANOVA (2 backgrounds33 head scanning conditions
as the within-subject factors) was conducted for the
response times. The data were approximately normally
distributed in the groups (Lilliefors test) and satisfied
the sphericity assumption based on the Mauchly’s test

Figure 6. Median recognition rate and average response time for each condition. (a) Median recognition rates across the 35 objects for
the six experimental conditions. Background clutter significantly reduces the recognition rates. Motion parallax (both coherent and
random scanning) significantly improved the object recognition rate. Error bars represent the interquartile range. (b) Average response
times for the six conditions. The conditions with clutter show a significantly longer response time than the conditions without clutter.
Subjects also tended to spend more time in the conditions with multiple views when compared with the static conditions. The P values
were Bonferroni corrected. Error bars are standard error of the mean (SEM).
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(for the factor of scanning condition, test statistic W¼
0.98, P¼ 0.69; for the interaction term, W¼ 0.98, P¼
0.71). Both background conditions (F(1, 34)¼ 10.23, P
¼ 0.003) and scanning conditions (F(2, 68)¼ 9.82, P¼
0.0002) significantly influenced the response times. No
interaction was found between the two factors (F(2, 68)
¼ 0.54, P ¼ 0.59). All conditions with background
clutter showed significantly longer response times (on
average, 47 seconds) than the conditions without
clutter (~37 seconds, t(104) ¼ 4.28, corrected P ¼
0.0004). Subjects spent more time in the conditions
with multiple views when compared with the static
conditions (36 seconds): the coherent multiple-view
conditions were on average 9.5 seconds longer and the
random scanning conditions were approximately 10
seconds longer. The response time of the no-clutter
static viewing condition was the shortest (32 seconds).
With background clutter, the post hoc contrasts
showed that significantly longer times were spent for
the coherent scanning (t(34) ¼ 3.01, corrected P ¼
0.044) and the random scanning conditions (t(34) ¼
3.10, corrected P ¼ 0.035) when compared with the
static condition.

Head Movements Analyses

The displayed image sequence for each trial was
triggered by subjects’ lateral head movement, and thus
indicated quantized head positions. For each trial, the
head movement range was first characterized using the
number of displayed unique images from the preset
nine viewpoints. The wider the subject’s head shifted
laterally, the more unique viewpoint images were
displayed. On average, approximately five of nine
frames were explored covering approximately 12-cm
lateral head shift. Slightly but significantly more frames
were explored in the conditions with clutter, and more
frames were seen under coherent or random scanning
than the static conditions (see Supplementary Appendix
Fig. A3 for more details). The median main scanning
frequency was approximately 6 cycles/min, which
means that approximately 10 seconds was spent on
average by subjects to complete one cycle (Supplemen-
tary Appendix – Results of head movement analysis).

Discussion

Visual Prostheses Evaluation

We tested a newly proposed strategy of OI-
stabilized motion parallax13,21 to declutter back-
grounds and aid in object recognition in low-
resolution images. This strategy may be applied to

future visual prostheses. A visual prosthesis should
provide spatial and temporal characteristics similar to
those of the human vision system so that it is able to
assist in visual tasks, such as learning, adapting, and
generalizing from trained objects to untrained or even
unfamiliar objects.30 Bearing such goals in mind, we
developed a testing environment that avoided repeat-
edly using trained objects in the testing. Object
recognition refers to a connection between a previ-
ously encountered stimulus and a new encounter with
the same/similar stimulus.31 Prior studies with visual
prostheses (e.g., Alpha IMS, Argus II) and SSDs
(BrainPort) reported investigating object recognition,
but used a few pretrained objects in their performance
evaluation.3,11,12,32 In the literature, this is referred to
as pattern or object discrimination33 in distinction
from object recognition.

Because we are interested in object recognition
performance with and without decluttering provided
by motion parallax, we designed the experiments to
ensure a recognition task and not a mere discrimina-
tion task. Our subjects saw each new (not previously
presented) object only once across all trials. This
methodology has been useful for our study using
degraded images to simulate prosthetic vision with
normally sighted subjects. However, it requires a
large number of subjects, which will be impractical in
clinical trials with implanted subjects or even with
blind users of SSDs. Alternately, one can use a
limited number of subjects if a large supply of images
is available for repeated testing. In preparing this
study and more recent work, we realized that
selecting and imaging a large number of objects for
such testing may not be simple for either real or
virtual objects. A proper and efficient methodology
for confirming the visual system characteristics, that
is, the abilities of a functional vision system of visual
prostheses, is needed for future evaluations.30

Background Clutter Disrupts Recognition in
Simulated Prosthetic Vision

Background clutter hinders subjects’ ability to
recognize objects,9 and visual prostheses are more
susceptible to this problem due to the low resolution
and dynamic range of current devices.10 These
limitations have been shown with simulated prosthetic
vision where subjects have significantly worse recog-
nition performance with background clutter com-
pared with no clutter in a static scene. Jung et al.10

investigated the effect of resolution on recognition
improvement in binary edge images without and with
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clutter (Fig. 7). Their results show that given a fixed
FoV of 108 3 78, the difference in recognition rates
between without and with clutter first increases and
then declines as the resolution increases. The im-
proved recognition due to decluttering reaches
maximum around a resolution of 10,000 pixels. The
benefit of decluttering starts to decline for higher
resolution, as the difference saturates at a resolution
of 100,000 pixels or higher.

Results from both our experiments showed that
background clutter yielded lower recognition rates
compared with those with clutter-free backgrounds
in the static condition, further emphasizing that
background clutter diminishes the recognition per-
formance. In the Clutter Complexity experiment,
from the 20% background complexity (median
recognition rate 30%) to no clutter (median recog-
nition rate 50%), recognition rates differed by 20%.
In the static condition of the Motion Parallax
experiment, recognition rates with background
clutter (median 10%) improved to 40% without
background clutter, a 30% difference. The difference
in the latter was larger because the background
complexity with the lowest recognition rate was
selected for the experiment. Note that the improve-
ment in recognition rate for the 400-pixel images we
used is expected to be only 5% for binary images as
shown in Figure 7 based on Jung et al.10 Although
the magnitude of object recognition rate may vary
with experimenter scoring and subjects in different
studies,34 this large difference may be accounted for
by the dynamic range difference. Here, we used a

much higher dynamic range (256 levels) compared
with the binary images used by Jung et al.10

Resolution and dynamic range can be traded-off,
as in dithering or halftone,35,36 and thus our results
could be comparable to those of higher resolution
binary images described in Figure 7. The level of
improvement we found with no cluttering is close to
the level of improvement with much higher resolu-
tion in binary edge images (~103.5–104 in Fig. 7).

Decluttering Improves Recognition of
Fixated Object With Background

Various techniques have been proposed to over-
come the effect of background clutter.10,14,37–41 Our
proposed motion parallax method takes advantage of
the visual system’s ability to declutter based on
differential movements of object and background.
In the Motion Parallax experiment, we used the
Oculus HMD to simulate motion parallax with
fixated objects using subjects’ head movements. With
background clutter, the object recognition perfor-
mance improved from 10% with static viewing to 20%
with coherent multiple viewpoints. The simulated
motion parallax with OI-stabilization did allow for
better performance by presumably providing subjects
with cues to aid in separating object from back-
ground. This is not very surprising as we used the
visual systems of normally sighted subjects to perform
the interpretation. This is encouraging but it does not
assure that a similar improvement may be achieved
with a retinal prosthesis or stimulation of the tongue
(e.g., the BrainPort). Further testing using a similar
paradigm is required.

Although motion parallax decluttering almost
doubled the recognition performance (from 10%–
20%), it did not achieve the same level of performance
as the conditions without clutter (40%). This suggests
that even with these better pixelated images and
normal visual processing, the decluttering effect of
motion parallax is partial and better performance
may be achieved if the clutter is further eliminated or
reduced. Does this mean that methods to remove
background clutter, such as in Jung et al.10 and
Dagnelie et al. (IOVS. 2016;57:ARVO E-Abstract
5167), are preferred or should these be combined with
motion parallax? Further research is required to
provide an answer to this question. Meanwhile, the
use of head movements combined with our proposed
OI-stabilization provides additional benefits to users,
such as multiple viewpoints and depth cues, which
should not be overlooked.

Figure 7. The difference in object recognition between with and
without background clutter (Recognoclutter � Recogclutter) for binary
edge images as a function of resolution, calculated from the data
presented in figure 8 of Jung et al.10
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For example, the viewpoint change from head
scanning may support better recognition due to the
availability of multiple views of an object providing
additional information. Bambach et al.42 showed that
the improvement in recognition due to multiple
viewpoints is higher when the relationship between
the observer and the object is consistent. Such a
consistent relationship occurs when the observer is
moving himself/herself, as in motion parallax, or the
observer manually manipulates the object on his/her
own. The benefit of the multiple viewpoints declines if
they are generated by independent movement of the
object.43 However, our results with the very low-
resolution images failed to show the performance
improvement due to multiple viewpoints: among the
condition without clutter, the recognition rates were
not improved through scanning with multiple view-
points (all medians~40%–50%). Thismay be due to the
coarse image pixels, limiting the changes of neighboring
viewpoints and making them rather hard to interpret.

We also found that the random scanning condi-
tion improved recognition performance almost as
well as the coherent condition. The lack of difference
here may suggest that a matching between the user’s
self-motion and the acquired images was not
important to recognize the OI. However, the
coherent scanning may serve other important func-
tions. Besides avoiding the potential risk of motion
sickness, the correspondence between the self-mo-
tion and the acquired sensory information yields
crucial cues in distinguishing the self-motion from
the external object motion (e.g., OI-induced mo-
tion). The external object motion was also found to
be beneficial in recognizing low-resolution blurry
images.44 Further studies are necessary before we
conclude prematurely that coherence of motion is of
no value.

While motion parallax may aid decluttering and
improve object recognition, it inherently takes time
for the subjects to move their heads and create the
movement parallax. In the Motion Parallax experi-
ment, subjects took approximately 10 seconds longer
to respond in background clutter conditions than in
no-clutter conditions. Subjects on average spent
approximately 10 seconds to complete one cycle of
lateral head movements. The longer response times
may reduce the effectiveness of motion parallax
decluttering for object recognition.

Summary

We demonstrated the usefulness of OI-stabilized
motion parallax for improving object recognition,

presumably by supporting object and background
separation. The improvement was demonstrated with
a normal visual system and needs to be repeated with
true visual prostheses or SSDs. Even with normal
sight the improvement was modest, leaving room for
further improvement with additional approaches for
background clutter removal.
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 1 

Appendix  

Object images captured with BrainPort V200 camera 

Full list of objects captured with the BrainPort V200 and the distances at which the objects were placed 

from the camera based on object size. Object order matches the order used in Fig. A1. 

Object Distance (cm)  
from camera to object Object Distance (cm)  

from camera to object 
mason jar 50 lemonade bottle  70 
teapot  50 rubber duck 30 
rat 50 cow 30 
wooden body 70 truck 30 
mug 50 boot 70 
scissors 30 turtle 30 
headphone 70 tree 50 
plant 70 tea tin 50 
full wine glass  70 spray bottle 70 
teddy bear 70 pear 30 
glue bottle 50 hat 70 
fish 70 lamp 70 
pot 70 stapler 50 
purse 50 mannequin head 70 
sun glasses 70 tape dispenser 50 
sneaker 70 football 50 
flash light 70 coffee cup 

50 building 30 

 

Images of the 35 objects captured for both experiments in front of various background 

complexities are shown below. The leftmost image is the high-resolution control (480×480). The second 

image is low resolution (20×20), no background, and subsequent images are low resolution with 5%, 

10%, 15%, 20%, and 25% background complexities, respectively. Object order is arranged to match that 

used in Fig. A1. Different backgrounds were used across the objects although for the same complexity 

level.  
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Recognition results of individual objects 

Figure A1 shows the recognition rates of each individual object and condition. For some objects, 

recognition rates in low resolution were low across all background complexity conditions, indicating the 

resolution was a major factor hindering recognition. These included the tape dispenser, pear, lamp, 

building, turtle, and flashlight. Objects such as the mannequin head, stapler, rubber duck, boot, and 

coffee cup showed a non-monotonic effect of the background complexity, among which, the rubber 

duck and coffee cup had better recognition with one certain background, perhaps due to higher contrast 

provided at that background image. To quantify the effect of background complexity, the recognition 

rates as a function of the background complexity levels were fitted to a logistic model for each object 

(dashed lines in Fig. A1). A logistic regression across the 35 objects also showed that the odds of the 

object being recognized in 5% background complexity was 0.55 times the odds of being recognized in 
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no-clutter (�̂� = −0.60, 𝑧 = −3.83, 𝑝 = 0.0001); that is, the odds of being recognized was 45% lower 

for 5% background complexity than no-clutter. The odds of being recognized was 72% lower for 25% 

background complexity than no-clutter (�̂� = −1.27, 𝑧 = −7.47,𝑝 < 0.00001).   

 
Figure A1. Recognition rate of each individual object and background complexity. The blue filled 
triangles represent the recognition rates of the high-resolution, no background control images. 
The black symbols show the performance of the simulated prosthetic vision conditions, among 
which the black triangles indicate the condition without clutter and black circles for conditions 
with clutter. The filled black circles correspond to background complexity selected for the Motion 
Parallax experiment. The black dashed lines are logistic fits for the recognition as a function of 
background complexity levels. The p values (the Wald test) show whether the coefficients of the 
background complexity in the logistic regression model are significantly different from 0, and 
thus represent the effect of background on object recognition. Significant effects are noted in 
red and the objects are ordered according to the background effect (increasing p values). 
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Figure A2 represents recognition rates calculated based on 10 subjects’ responses for each object 

in each condition in the Motion Parallax experiment. Given the non-normality observed in the data, we 

used a nonparametric test, the Wilcoxon signed-rank test, for statistical analysis.  

 
Figure A2. Recognition rates of each object by condition. Ten responses collected for each object 
from 10 randomly selected subjects under each experimental condition were used to calculate the 
recognition rate. Blue triangles and solid lines represent conditions without background clutter, 
and red circles and dashed lines are conditions with clutter. The three scanning conditions are 
displayed along the x-axis: static, coherent, and random multiple viewpoints.  
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Alternative analysis of recognition rates in the Motion Parallax experiment 

In the main text, the recognition rate for each image under each condition were computed across 

subjects. Alternatively, the recognition rate can be calculated for each subject across images; that is, we 

calculated the recognition rate as the ratio of the number of correctly recognized images over the total 

number of images for that subject and condition. A two-way repeated measures ANOVA (background 

and scanning conditions as the within-subject factors) was conducted. The data did not violate the 

sphericity assumption by the Mauchly’s test (for the factor of scanning condition, test statistic 𝑊 =

 0.99,𝑝 = 0.90; for the interaction term, 𝑊 =  0.97,𝑝 = 0.52). Similarly, as reported in the main text, 

both the background (𝐹(1,59) = 157.6,𝑝 < 0.0001) and the scanning condition (𝐹(2,118) =

5.39,𝑝 = 0.0058) factors significantly affected the recognition rates. A weak interaction was also found 

between the background and scanning conditions (𝐹(2,118) = 3.52,𝑝 = 0.033).  

Results of head movement analysis in the Motion Parallax experiment 

The displayed image sequence for each trial indicated quantized head positions, and the number of 

unique images was used to measure the range of subjects’ head movement. Figure A3 shows the median 

number of unique displayed images for each condition. The static and no clutter condition had the 

smallest median frames, 4.8, and the median number of frames of the coherent with clutter condition 

was the largest, 5.8. More frames were explored in the conditions with clutter than without (the 

Wilcoxon signed-rank test approximate 𝑧 = 3.66,𝑝 = 0.0001, symmetry test p = 0.55). The coherent 

(𝑧 = 4.77,𝑝 < 0.0001, symmetry test p = 0.74) and random scanning (𝑧 = 3.13,𝑝 = 0.0009, 

symmetry test p = 0.40) conditions both had significant more unique frames than the static condition. 

With clutter, more unique frames were seen while coherent scanning than the static condition (𝑧 =

3.81,𝑝 = 0.0001, symmetry test p = 0.34).   
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Figure A3. The median number 
of unique image frames viewed 
for each condition across the 35 
objects (averaged across 
subjects). Slightly but 
significantly more frames were 
explored in the conditions with 
clutter, and the conditions with 
coherent or random scanning. 
Error bars represent the 
interquartile range.  

 

Fourier analysis was performed on the quantized head position signals to determine the main 

head scanning frequency in cycles per minute. To find the head movement frequency for each trial, the 

quantized head positions as a function of time were Fourier transformed into the frequency domain (Fig. 

A4). The frequency with the highest amplitude was selected as the main head scanning frequency. Time 

for each cycle of movement was calculated from the main frequency. Across all subjects and trials, the 

median main scanning frequency was about 6 cycles/min, which means that it took about 10 s on 

average for subjects to complete one scanning cycle. 

 

Figure A4. Fourier analysis of 
the quantized head position 
sequences (as shown in inset). 
The frequency with the highest 
amplitude was taken as the main 
head scanning frequency (red 
circle). The DC component is not 
shown. 
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