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Abstract. The most prominent problem in virtual reality (VR)
technology is that users may experience motion-sickness-like
symptoms when they immerse into a VR environment. These
symptoms are recognized as visually induced motion sickness
(VIMS) or virtual reality motion sickness. The objectives of
this study were to investigate the association between the
electroencephalogram (EEG) and subjectively rated VIMS level
(VIMSL) and find EEG markers for VIMS evaluation. A VR-based
vehicle-driving simulator was used to induce VIMS symptoms, and
a wearable EEG device with four electrodes (the Muse) was used
to collect EEG data. The results suggest that individual tolerance,
susceptibility, and recoverability to VIMS varied largely among
subjects; the following markers were shown to be significantly
different from no-VIMS and VIMS states (P < 0.05): (1) means of
gravity frequency (GF) for theta@FP1, alpha@TP9, alpha@FP2,
alpha@TP10, and beta@FP1; (2) standard deviation of GF
for alpha@TP9, alpha@FP1, alpha@FP2, alpha@TP10, and
alpha@(FP2–FP1); (3) standard deviation of power spectral entropy
for FP1; (4) means of Kolmogorov complexity (KC) for TP9, FP1, and
FP2. These results also demonstrate that it is feasible to perform
VIMS evaluation using an EEG device with a few electrodes.
c© 2020 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2020.64.2.020501]

1. INTRODUCTION
Virtual reality (VR) technology has advanced significantly
in recent years. Many new devices have been introduced
to create games, movies, and other immersive experiences,
suggesting that they are on their way to becomemass-market
products [1]. However, visually induced motion sickness
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(VIMS, also called virtual reality motion sickness) may occur
when a person immerses into the VR environment [2–5].
VIMS is a motion-sickness-like disorder often occurring to
a person exposed to an environment where the visual and
proprioceptive motions are conflicting [6, 7]. A person with
VIMS suffers from headaches, stomach awareness, nausea,
disorientation, sweating, fatigue, and even vomiting [2, 4,
6, 8], which raises safety and health concerns for current
VR platforms [2, 9]. Therefore, VIMS is considered a major
hurdle for wide acceptance of VR applications.

To investigate any VIMS reduction methods, it is
necessary to have tools to evaluate VIMS efficiently and
effectively. The simulator sickness questionnaire (SSQ) [4,
10] has been widely used to measure the amount of VIMS
experienced during VR exposure. However, this subjective
evaluation method has some disadvantages: it is usually
performed before and after a VIMS experiment, and due to
the large length of the questionnaire, it cannot be done in real
time, hence cannot describe the changes of VIMS during the
exposure. As a result, it is difficult to detect the emergence of
VIMS, or get the details of VIMS development by using this
method. Simpler versions of the quick VIMS rating scheme
were also introduced for pseudo-real-timeVIMSmeasure [2,
11]; but they depend on subjective response, which makes
the evaluation susceptible to individuals’ bias. To overcome
the limitations of subjective VIMSmeasures, objective VIMS
evaluation methods based on various physiological signals,
such as electrogastrogram [12], electrocardiogram [13],
salivary cortisol level [4, 14, 15], blood pressure [16], pulse
rate [16], electroencephalogram (EEG) [9, 17, 18], postural
sway [19], electrooculogram (EOG) [20, 21], and head

J. Imaging Sci. Technol. 020501-1 Mar.-Apr. 2020

mailto:alex_hwang@meei.harvard.edu


Liu et al.: A pilot study on electroencephalogram-based evaluation of visually induced motion sickness

movement [20], were tested. Such physiological signals can
be measured continuously and precisely.

Different physiological signals are associatedwith differ-
ent VIMS theories. For example, the EEG signal is usually
related to the sensory conflict theory [12, 22]. The sensory
conflict theory is that situations that provoke VIMS can be
characterized by a condition of sensory rearrangement [22],
in which the motion signals transmitted by the visual and
vestibular system (or maybe other proprioceptive systems)
are mismatched with one another, or different from what
is expected from previous experience [19, 22, 23]. Many
researchers measured EEG in motion sickness studies based
on sensory conflict theory [6, 24], to test if the EEG measure
can indicate the level of motion sickness objectively [9,
25–29].

Postural sway is usually related to the postural instability
theory [30], which predicts that postural activity will differ
between persons who are susceptible to VIMS and those
who are not, and these differences exist between before and
after the onset of subjective symptoms of motion sickness
[19, 30–33]. The postural instability theory has provided
objective measures (based on the center of pressure [19]
and other postural indicators) to predict the occurrence of
motion sickness.

The EOG signal is usually related to the eye-movement
theory [20, 34]. This theory proposes that reflexive eye
movements, such as the optokinetic nystagmus (OKN) during
visual yaw rotation, provide eye-muscle afferences that
ultimately stimulate the nervus vagus [20, 34]. VIMS severity
is shown to be correlated with OKN frequency [20, 35] and
OKN slow phase velocity (OKN SPV) [20, 36].

Head movement is usually related to the subjective
vertical mismatch theory, which is actually a refinement of
the sensory conflict theory proposing that not all sensory
conflicts are provocative but only those associated with the
sense of verticality [20]. This theory argued that VIMS
symptomsmay arise because subjects make inadvertent head
movements while in circular vection. Such head movements
cause pseudo-Coriolis effects, which are known to be VIMS
provocative [20, 37].

According to the sensory conflict theory, the changes
in EEG data could be accounted for by the signal conflict
mechanisms in the brain [9, 17], which is believed to be
one of the main causes of VIMS [6, 7, 9, 17, 28, 29, 38,
39]. Although the changes in EEG signal may be caused by
other factors like distress, excitement, tiredness, etc., previous
studies have shown that EEG signal changes are associated
with the VIMS provoked in VR-based three-dimensional
environment, where the symptoms are similar to the ones
induced in the real world [4, 40].

Although previous studies have shown that the changes
of VIMS symptoms did affect the changes of EEG signal [9,
17, 41, 42], the details from those studies were not consistent,
and, in some cases, they contradicted each other. For
example, Lin et al. claimed that the power spectral density
(PSD) of the alpha and gamma bands of the EEG signals can
be used asVIMSmarkers since the correlations between those

PSDs and subjective VIMS rating exceed the correlations
in other frequency bands in motion-sickness-related brain
regions [9]. Naqvi et al. reported that the decrease in the
power of the EEG alpha band can be a possible VIMS
marker [41]. However, Chen et al. observed that the increases
in the total power of the EEG alpha and theta bands were
related to subjective VIMS scoring [17, 28].

The fundamental reason why these details varied may
be due to the large variability of individual susceptibility to
VIMS. It is reported that about 30% of viewers are suffering
from VIMS when watching a moving scene [21]; however,
the prevalence of VIMS can vary from 1% to 70% depending
on the apparatus and stimuli [21]. In addition, the scoring of
VIMS varies for each viewer [9, 21].

In this article, we describe yet another effort of testing
the feasibility of EEG signal analysis for evaluating the
subject’s VIMS when engaged in a VR-based vehicle-driving
simulator (VDS). Both subjective and objective methods
were measured to evaluate VIMS. The means and standard
deviations of gravity frequency (GF) [42, 43], power spectral
entropy (PSE) [42], andKolmogorov complexity (KC) [44, 45]
were computed from EEG data to determine whether they
can be used as VIMS markers. Those measures are reported
to be highly correlated with visual fatigue [42] and mental
fatigue [44], which may be the end results of VIMS.

Another goal of this article is to test whether similar
results can be achieved with an EEG device with a
small number of electrodes. Note that most previous
studies collected the EEG data with full-scale clinical EEG
equipment, which is usually expensive and inconvenient
for the user to wear in a VR environment. To overcome
these disadvantages, we used a wearable wireless EEG device,
the Muse, for EEG data collection for its affordable price
and convenience. This EEG device is a sparse recording
device affording only four electrodes for EEG data collection.
It supports wireless data transmission (via Bluetooth) and
real-time processing. Note that more electrodes do not
always lead to better results due to the complication of
multidimensional signal noise. Furthermore, it is often
difficult to detect VIMS onset in real time. Some researchers
have tried to reduce the number of EEG electrodes used in
EEG applications. Cai et al. [46] used three-electrode EEG
data for depression detection. They argued that compared
with 128 channels’ EEG, their simpler test (three-electrode
EEG) can make diagnosis more accessible and widespread,
and researchers can perform more tests on more patients
given the same amount of time and money [46]. To the
best of our knowledge, no one has attempted to evaluate
VIMSusing an EEGdevicewith less than five electrodes. Our
subsequent experiments demonstrated that EEG recording of
four electrodes are feasible to perform VIMS evaluation.

2. MATERIALS ANDMETHODS
2.1 Subjects
Normally sighted (or corrected to be normal vision) subjects
of age from 20 to 40 years old were recruited from Schepens
Eye Research Institute (SERI). All subjects gave their written
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Table I. Subject information.

Subject Sex Age Weight (kg) Handedness Been trained Health status
before Vestibular system Visual system

S1 M 76 Right-handed No Normal Normal
S2 M 80 Right-handed No Normal Normal
S3 M 77 Right-handed No Normal Normal
S4 F 55 Right-handed No Normal Normal
S5 F 20–40 63 Right-handed No Normal Normal
S6 F 72 Right-handed No Normal Normal
S7 F 93 Right-handed No Normal Normal
S8 F 46 Right-handed No Normal Normal

Figure 1. MuseTMused for EEG recording. (a) Locations of electrodes
in the Muse. (b) Top-down view of the EEG electrode positions on the
subject’s head.

informed consent before they participated in the study. The
study was conducted in accordance with the Declaration of
Helsinki. The protocol and informed consent were approved
by the Institute Review Board of Schepens Eye Research
Institute (16-015H). Eight subjects (three males and five
females) completed the studies and their data is reported
here. Table I lists information about the subjects.

2.2 EEG Recording
The MuseTM (InteraXon Inc., Ontario Canada), shown in
Figure 1(a), was used to record the EEG data continually
throughout the experiment. There are four electrodes in the
Muse, two are located at the frontal lobe areas (FP1 and FP2)
and the other two are at the temporal lobe (TP9 and TP10)
areas, as shown in Fig. 1(b) [47]. In our experiments, the
analog EEG signals were sampled with 10-bit quantization at
a sampling rate of 220 Hz [47]. The Muse was connected to
a computer through Bluetooth; the data output was recorded
and stored on the computer for post-analysis.

EEG data are usually contaminated by various artifacts,
including eye blinks, muscle movements, and indoor power-
line noise [9]. In order to remove these artifacts as much
as possible, a notch filter in the Muse was adopted. The
Fast Fourier Transform (FFT) coefficients extracted from the
filtered signal by the Muse were used for the analysis. In
our experiments, the FFT coefficients were used for GF and
PSE computation; the filtered raw EEG data measured in
microvolts was used for KC computation.

Note that many studies have shown that the dry contact
EEG device (such as theMuse) performs as well as other EEG
devices with wet electrodes [48–50].

2.3 Driving Simulator for Inducing VIMS
We used a wide field driving simulator (DE-1500, FAAC Inc.
Ann Arbor, MI) to induce VIMS [47]. The VR-based driving
simulator comprises a motion seat, a force feedback steering
wheel, and five displays, which provides both realistic visual
and proprioceptive stimulation to the subjects. All five
displays are 42-inch LCDdisplays, covering a total horizontal
field of view of 220◦ and vertical field of view of 63◦. During
the experiment, the subjectswere asked to drive the simulator
while wearing the Muse on their head. The same driving
scenario was used for all subjects. The scenario contains a
long winding road (consists of multiple winding sections)
that is prone to evoke VIMS symptoms as the subjects
drive the VDS through this road. Some studies [9, 18] used
the EEG data collected during driving on a straight road
as the baseline/control because driving on a straight road
induces less motion sickness. However, it is still questionable
whether the data collected within a straight-road driving can
serve as a control condition because physical and emotional
stimulations of driving on awinding road are clearly different
from that of on a straight road. In our experiments, we
also measured subjective VIMS level. Actual onset of VIMS
occurred a few minutes after starting the driving on winding
roads, meaning that what we measured was not just caused
by ‘‘driving.’’ In our study, VIMS was continuously measured
even after the driving ended. So, we split the collected EEG
data based on the VIMS states, no-VIMS (control), and
VIMS (effect) to conduct within-subject and within-trial
comparisons between those two states.

2.4 Experimental Protocol
The experiment was carried out in an air-conditioned room
with a temperature of 20◦ C. All subjects were never exposed
to the VR scenario prior to the experiment. A three-segment
experimental protocol (see Figure 2) was prepared for
VIMS evaluation: pre-driving, driving, and post-driving
segment. Subjects were asked to complete an SSQ before
and after the experiments. This pre-SSQ completion also
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Figure 2. A typical VIMS level changes during the three-segment
experimental protocol. The x -axis denotes the timeline and the y -axis
denotes the measured VIMS level. The blue bars between the experimental
sections indicate the transition time between getting in and out of the
driving simulator.

helps the subjects to establish a more consistent VIMS rate
scale by familiarizing with the VIMS symptoms before the
experiment.

In the pre-driving segment, the subjects were required to
remain quiet and relaxed in their favorite posture, and their
baselines of physiological (EEG) state were recorded. In this
segment, no-VIMS occurred for all subjects.

The driving segment comprised of driving on a long
winding road. Each subject had different VIMS tolerance
so actual driving duration varied from several minutes to
over 30 minutes. During the driving section, the subjects
verbally reported their subjective rating of VIMS level when
they felt there was a change of VIMSL. The VIMSL can
be 0 (no-VIMS), 1 (slight VIMS), 2 (moderate VIMS), 3
(severe VIMS), and 4 (very severe VIMS). We used this
simple asynchronous VIMSL reporting method to obtain
temporal VIMSL changes that the subjects experienced. Note
that a similar temporal VIMS reporting scheme was used to
measure the effect of dynamic (peripheral) visual field size
change on VIMS [2]. The subjects continued to drive until
they felt very uncomfortable and could not drive anymore.

After the driving stopped, the subjects left the driving
simulator for post-driving measurement. In this segment,
they were asked to rest to recover from the motion sickness.
The duration for recovery varied between individuals.

Note that EEG data and VIMSL were recorded through-
out the procedure. There were brief interruptions (e.g., for
getting in and out of the driving simulator) of measurements
between each segment (less than 1minute), which are labeled
as ‘‘transition’’ in Fig. 2. The EEG data recorded during these
transition periods were excluded in our EEG data analysis.

In our experiments, each subject performed only a single
trial. The data from all the subjects were used for the analysis
of each potential marker. The reason why each subject did
not repeat the trial is that making a subject repeat the trial
may change his/her adaptation (i.e., tolerance, susceptibility,
or recoverability) [51–54]. It may have an impact on the
subsequent analysis of VIMSL changes. What is more, those
who had ever been trained in VDS were excluded from the
recruitment, as described in Table I.

2.5 Data Processing
The purpose of our study was to determine whether the EEG
signal changes could be used as markers of a person’s VIMS

onset in the VR environment. We hypothesized that if VIMS
was induced by the perceptual conflicts of the self-motion
when interpreting the motion signals from various sensory
systems in the brain, the EEG signals between no-VIMS
and VIMS states should have (at least) some differences,
reflecting the brain’s conflicting state.

In this study, we investigated the means and standard
deviations of the GF, PSE, and KC of the EEG signals as
potential marker candidates for VIMS. For each subject,
those potential markers of EEG signals within no-VIMS and
VIMS states were computed separately and then compared
within a subject. Such pairwise comparisons were done for
all subjects to see if there were any significant differences
between the states. The increase or decrease of the means of
the candidate markers may represent the overall amount of
brain activity change, while the standard deviation changes
may indicate the amount of brain activity disturbance due to
the VIMS. Note that the lengths of the EEG signals analyzed
vary across participants (due to varied VIMS onsets and exit
times). However, computing the markers within no-VIMS
and VIMS states separately helps to eliminate the effects of
variations of EEG signal length on the results. The remainder
of this section describes the detailed methods for GF, PSE,
and KC computations.

2.5.1 Gravity Frequency
Gravity frequency reflects the transition of EEG power
spectral density (PSD) [42]. It allows us to see the temporal
changes in brain activity within a given frequency band at
each electrode location. It was computed by [42, 43]

GF =

f2∑
f=f1

(
PSD

(
f
)
· f
)

f2∑
f=f1

PSD
(
f
) , f1 ≤ f ≤ f2 (1)

where f represents the frequency of the EEG signal, f1 and
f2 represent the lowest and highest frequency of a given
frequency band, and PSD(f ) represents the power spectral
density corresponding to a given EEG frequency, f.

Figure 3 shows the procedure of GF computation. Note
that the PSD describes the power distribution of an EEG
signal in the frequency domain for a given time period. A
sliding time window of 3 minutes was empirically chosen
for computing the PSD because it optimizes the trade-off
between temporal resolution and computational complexity.
For consistency, these raw data (FFTs) segments of 3 minutes
were also used for PSE and KC computation. The PSD
and GF were computed for each frequency band, i.e., delta
(0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
and gamma (30–50Hz), of each electrode, i.e., FP1, FP2, TP9,
and TP10.

The differences of GFs between the paired elec-
trodes (FP2–FP1 and TP10–TP9) were alsocomputed for
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Figure 3. Flowchart of the gravity frequency (GF) computation. (a)
The raw EEG data are segmented into 3-minute data segments. All the
blue blocks (no-VIMS) and the red blocks (VIMS) in (a) are grouped by
the states and their statistical features are calculated for comparisons of
the two states. Data segmentation was done from the beginning of the
experiment. This operation repeated until it meets the transitions of the
action or the moments of change between no-VIMS and VIMS states. In
general, segments less than three minutes are discarded. (b) The power
spectral density (PSD) function for each data segment is computed for each
electrode. Note that the PSD computation transforms each data segment in
the temporal domain to the frequency domain. Therefore, we can separate
the brain activity in each frequency band (alpha, beta, delta, . . .). (c) The
representative ‘‘center of mass’’ frequency of a given frequency range, GF,
for each frequency band is calculated using Eq. (1) for each electrode.
Note that GF computation brings the brain activity of each frequency
band back to the temporal domain so that we can monitor the frequency
bandwise activity monitoring in time. For the purpose of illustration, only
GFs of FP2 are shown in the bottom figure.

each frequency band since Miyazaki et al. suggested that
asynchronous bilateral MT+ activation (i.e., between two
hemispheric brain areas) could be a marker of VIMS [6].

2.5.2 Power Spectral Entropy
Power spectral entropy is a measure of complexity reflecting
the disorder of time sequence signals and the level of
irregularity of multifrequency components signals [42].
The lower the PSE the more uniform the signal energy
distribution over the whole frequency band [42]. Note that
the PSE also has been shown as a sensitive parameter of brain
activity classification in brain–computer interaction (e.g.,
imaginary handmovements) [55, 56]. The PSE is good for the
measurement of nonlinear dynamic states, which requires a
small amount of data [56]. The previous study has shown
that the PSE can be used to distinguish different mental tasks
(e.g., imagining that the left or right hand is moving) [56].

The Shannon entropy of the power spectrum of the
signal can be defined as [42]

PSE=−
f2∑

f=f1

p
(
f
)

log2
(
p
(
f
))

, (2)

where the probability of power occurrence for a given
frequency, p( f ), can be computed as follows:

p
(
f
)
=

PSD
(
f
)∑f2

f=f1 PSD
(
f
) , f1 ≤ f ≤ f2. (3)

Unlike the GF computation, PSE was computed to monitor
the overall brain activities over the full frequency range
within a given time range. So, we set f1 = 0Hz and f2 = 50Hz
for Eq. (2) and Eq. (3), and PSE was computed for each
electrode every 3-minute data segment.

2.5.3 Kolmogorov Complexity (KC)
Kolmogorov complexity can also be used to quantify the
complexity of EEG signals [44]. Note that unlike the PSE,
the KC measures the signal complexity directly from the
time domain and not from the frequency domain. The KC
has been used to measure the mental fatigue and showed
encouraging results, where the KC of the EEG decreases as
the mental fatigue increases (i.e., signal became less random
when a person is in a mental fatigue state) [57].

KC computation consists of two steps: binary encoding
and compression ratio computation. The temporal signals
from each electrode were first encoded into a binary string
(symbol sequence). A set of unique binary words, which
could be concatenated to describe the full string, were
identified, and then, the shortest length binary word sequence
composed of a set of unique binary words were computed.
Finally, the ratio of the shortest length (compressed) of the
binary word sequence and the binary encoded string length
(uncompressed) was computed and used for ameasure of the
signal complexity [58]. In other words, the KC is a maximum
compression ratio of a signal when the signal is encoded into
a binary code.

In our KC computation, the same 3-minute data
segments used for GF and PSE computations were supplied
to the encoding process. For each data segment, the raw EEG
data were converted into a binary symbol sequence, x =< x0,
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Table II. Highest VIMSL that each subject experienced (Lmax).

Subject S1 S2 S3 S4 S5 S6 S7 S8

Lmax 4 4 2 2 4 3 3 2

Figure 4. Comparison of the durations (TTotal, TOccuring, and TRecovery)
between different subjects.

x1, x2, . . ., xi, . . ., xn−1 < (0≤i≤n− 1) using the following
equation:

xi =

{
0 xi < x
1 xi ≥ x,

(4)

where

x =
1
n

n−1∑
i=0

xi. (5)

For each data segment, the complexity of the symbol
sequence x of length n, KC, was obtained by

KC =
c (n)
b (n)

, (6)

where c(n) is the length of word sequence after the
compression of the binary encoded input length of n, b(n)
reflects the length of word sequence before the compression,
and b(n) = limn→∞ c(n) ∼= n

log2 n
[44, 59]. Note that the

KC varies within 0 and 1, where KC = 1 indicates the
randomness of the signal reaching the maximum [45].
Similar to PSE, KC was computed for each electrode.

3. RESULTS ANDDISCUSSIONS
3.1 Subjective VIMSL Changes Analysis
Let Lmax be the highest VIMSL that the subject experienced,
TTotal be the total driving duration, TOccuring be the length of
time from the start of the drive to the occurrence of VIMS
(the driving duration needed for VIMSL reaching ‘‘1’’), and
TRecovery be the recovery duration (the length of time from
the end of the drive to the VIMSL coming back to ‘‘0’’).
Table II and Figure 4 show the distribution of those factors
for eight subjects indicating a large individual difference in
tolerance, susceptibility, and recoverability.

From Table II and Fig. 4, we can find the following:

(1) The total driving duration varies among the subjects.
Generally, larger TTotal indicates higher VIMS tolerance.
The TTotal for S2, S6, and S8 are larger than 30 minutes.
These subjects showed higher VIMS tolerance.

Table III. Pearson linear correlation coefficients between TTotal, TOccuring, TRecovery, and
Lmax. Correlation coefficient |r | ∈ [0, 0.8] indicates a relative weak linear relationship
here.

Variables PLCCr

TTotal, TOccuring 0.78
TTotal, TRecovery −0.10
TTotal, Lmax −0.15
TOccuring, TRecovery −0.21
TOccuring, Lmax −0.11
TRecovery, Lmax 0.09

Table IV. Results of multivariate logistic regression.

Dependent variable Independent variables P

Lmax TTotal, TOccuring, TRecovery 0.24
TRecovery TTotal, TOccuring, Lmax 0.96
TOccuring TTotal, TRecovery, Lmax 0.96
TTotal TOccuring, TRecovery, Lmax 0.96

(2) The variation in TOccuring indicates that each subject had
a different VIMS susceptibility in our study. Generally,
smaller TOccuring indicates that subjects were more likely
to get VIMS in a shorter time. The TOccuring for S1 and
S7 are no more than 5 minutes. They were sensitive to
VIMS.

(3) The recovery time for each subject also varied a lot. To
a certain extent, smaller TRecovery indicates faster VIMS
recoverability. The TRecovery for S3 is less than 3 minutes.
It may suggest that S3 has a fast VIMS recoverability.
However, S3 could only reach the VIMS level ‘‘2’’. A
possible reason for this phenomenonwas that S3 had not
been ‘‘pushed’’ enough to reach the highest VIMS level.
Therefore, we divided each subject’s TRecovery by their
max VIMSL (Lmax) to be fair on comparing among the
subjects.

In addition, we investigated the linear relationships
between TTotal, TOccuring, TRecovery, and Lmax. Pearson linear
correlation coefficients (PLCC) between them are calculated
and presented in Table III, but no strong (|r | ≤ 0.8) linear
relationship between these variables was found.

We applied multivariate nonlinear regression analysis to
the factors (TTotal, TOccuring, TRecovery, and Lmax). As shown
in Table IV, the results are P ≥ 0.05 for all cases, indicating
that a multivariate logistic regression model is invalid.

We also tried other models such as polynomial regres-
sion model, but no significant correlation was found (all
P ≥ 0.05). This suggests that no functional relationship exists
between TTotal, TOccuring, TRecovery, and Lmax.

3.2 Objective EEG Data Analysis
We computed the means and standard deviations of the GF,
PSE, and KCmeasured in no-VIMS (VIMSL< 1) and VIMS
(VIMSL ≥ 1) states for the eight subjects. Before the main
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Figure 5. Temporal changes of the GF, PSE, and KC throughout the
experiment. As an example, the figure shows the data from electrode FP2
of subject S1. (a) GF in five different frequency bands; (b) PSE; (c) KC.

analysis, we investigated whether those measures (GF, PSE,
and KC) would vary simply as a function of time or not. If
it turns out to be the case, we can hypothesize that those
markers with significant differences between the two states,
indeed, were caused by VIMS. Figure 5 shows the changes
of GF, PSE, and KC of Subject S1 at FP2. From Fig. 5, we
can see that there is no substantial variation for the potential
EEG markers in the pre-driving segment. In this segment,
no-VIMS occurred for all subjects. This indicates that GF,
PSE, and KC may not vary over time without any VIMS.
Therefore, it is reasonable for us to take the data of this
segment as the baseline. Similar results can be obtained from
the data from other subjects and electrodes.

In this section, scatterplots were used to show the
changes of the means (standard deviations) of GF for each
frequency band for all channels and the bilateral differences
(FP2–FP1 and TP10–TP9). For PSE and KC, only the plots
for all channels and the bilateral differences were generated.
Each dot in the plots represents a subject’s data. If there is a
significant trend of increase or decrease due to the onset of
VIMS, the majority of dots should be located above or below
the diagonal line (i.e., no change), respectively. A pairwise

Figure 6. Comparison of the mean of GFs between no-VIMS state
and VIMS state, which showed a significant difference (P < 0.05). The
horizontal axis represents the mean GFs (Hz) in no-VIMS state, while the
vertical axis represents the mean GFs (Hz) in VIMS state. Each dot in the
plots represents a subject’s data.

Figure 7. Comparison of the standard deviation of GFs between no-VIMS
and VIMS states, which showed significant differences. The horizontal
axis represents the standard deviation GFs (Hz) in no-VIMS state, while
the vertical axis represents the standard deviation GFs (Hz) in VIMS state.
Each dot in the plots represents a subject’s data.

t-test was applied to find out whether the EEGmarkers were
significantly different from no-VIMS state to VIMS state.

3.2.1 Gravity Frequency
Figure 6 shows the distributions of all mean GFs having
significant changes (P < 0.05) between no-VIMS and VIMS
states: theta@FP1, alpha@TP9, alpha@FP2, alpha@TP10,
and beta@FP1. The P-value is corrected by Bonferroni
correction. In these frequency bands and channels, the mean
GFs in no-VIMS state are greater than those in VIMS state.

Similar analyses were carried out for the standard
deviations of GFs for each frequency band for all channels.
Figure 7 shows the results that are statistically significant
(P < 0.05) between no-VIMS and VIMS states: alpha@TP9,
alpha@FP1, alpha@FP2, alpha@TP10, and alpha@(FP2–
FP1). In all cases, we can see that the standard deviations
of GFs were increased in VIMS state, which indicates the
decrease in the dispersion of theGFs duringVIMS state. Note
that all significant reductions of the dispersion were found in
the alpha band.

The EEG power spectrums reflect fluctuations of the
vigilant state [42] and are associated with various mental
conditions [60]. For example, higher theta power is related
to the increased activity in memory and attention processes,
while higher beta power is associated with the spatial
localization processes, and higher alpha power in the
occipital lobe is associated with the level of relaxation [60].

In terms of VIMS, previous studies have shown that
some EEG power-related measures will decrease after the
onset of VIMS symptoms. Chen et al. argued that the overall
decrease of the GF indicates the decline of subjects’ alertness
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Figure 8. Scatterplot of the standard deviation of PSE for FP1. All data
points are below the diagonal line, indicating the standard deviations of
PSE for FP1 decreases when VIMS onset.

level [42], and especially, the alpha power suppression
can be referred to the blocking or desynchronization of
sensorimotor rhythms in parietal and the right and leftmotor
areas of the brain, which might be influenced by vestibular
inputs [29]. Naqvi et al. suspected that the drop in alpha
power indicates the visual fatigue or discomfort caused by
visual stimulus [41]. Our results are consistent with those
literature. We suspect that the decrease of GFmagnitude and
variability might indicate the reduced mental activity and
perceptual sensitivity in VIMS state.

We also noticed unusual signal noise in all bands and
channels from time to time. We suspect that those might be
caused by the poor connection between the electrodes and
skin. However, since the GF worked as an average filter for
the noise the impact of such signal noise was automatically
reduced in GF analysis.

3.2.2 Power Spectral Entropy
As mentioned in the previous section, PSE is a sensitive
brain activity classification parameter, reflecting the spectral
structure of EEG signals [56]. Lower average PSE represents a
uniform signal energy distribution over the whole frequency
band, while lower standard deviations of PSE indicate a less
disturbance or fluctuation in signal energy distribution.

Figure 8 shows the distribution of the standard deviation
of PSE for FP1, which turned out to be the onlymeasurement,
showing a statistically significant (t(7) = 2.36, P = 0.01)
difference between no-VIMS and VIMS states. As can be
seen from the figure, all data points are located below the
diagonal line, indicating that the standard deviations of PSE
for FP1 in no-VIMS state were larger than that in VIMS
state.We suspect thatwhenVIMSoccurred, the brain activity
at FP1 was significantly suppressed (as also shown in GF
analysis for alpha and theta wave of the FP1, Fig. 7). As a
result, the signal energy distribution turned uniform, and the
signal fluctuation decreased as well. No significant change of
mean PSE was observed for VIMS onset.

Figure 9. Comparison of the means of KC for the signal channels
(electrodes) which showed significant differences between no-VIMS and
VIMS states.

3.2.3 Kolmogorov Complexity
As it can be seen in Figure 9, themeans of KC for EEG signals
collected from all electrodes, except from TP10, showed a
significant decrease (all P < 0.05) with the onset of VIMS.

Previous studies have shown that KC of the EEG signal is
strongly correlative with mental fatigue [44, 57]. They found
that the KC decreases as mental fatigue increases [44, 57]. In
addition, Gao et al. found that the KC sharply drops shortly
after the epileptic seizure. They showed that the transient
EEG signals associated with epileptic seizures contain less
random components than normal background EEGs [58].
All these studies showed that KC values would decrease
when brain activity changes from normal to abnormal. Our
results also supported similar trends such that a decrease
of KC occurred with VIMS onset. We suspect that when
VIMS occurred, brain activity was significantly suppressed
and caused a decrease of KC.

4. CONCLUSIONS
The purpose of this pilot studywas to analyze the relationship
between the EEG and subjective VIMS rating and find
possible EEG markers for VIMS evaluation. An EEG device
with four electrodes was used to collect data. We computed
the mean and standard deviation of various EEG signal
descriptors and compared the values between no-VIMS
and VIMS states in an attempt to differentiate whether a
subject was in no-VIMS or VIMS state based on those signal
descriptors.

Our studies suggest the following:

(1) The tolerance, susceptibility, and recoverability of a
subject to VIMS were quite different between subjects.
It seems there was no functional relationship between
each subject’s tolerance, susceptibility, recoverability, and
subjectively rated VIMS level.

(2) For the following frequency bands and channels of EEG,
the means of GF decreased significantly in VIMS state:
theta@FP1, alpha@TP9, alpha@FP2, alpha@TP10, and
beta@FP1.

(3) For the following frequency bands and channels of
EEG, the standard deviations of GF, which indicates the
dispersion of the brain signal, decreased significantly
in VIMS state: alpha@TP9, alpha@FP1, alpha@FP2,
alpha@TP10, and alpha@(FP2–FP1).
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(4) A significant reduction of the standard deviation of PSE
was observed at FP1 when VIMS occurred.

(5) There was a significant reduction in the means of KC for
TP9, FP1, and FP2 when VIMS occurred.

(6) The values of Cohen’s d for each of the statistically
significant t-tests were large (d > 0.80), indicating that
the EEG markers that we identified are indeed strong
indicators of VIMS.

(7) An EEG device with a small number of electrodes (four
electrodes) is feasible to perform VIMS evaluation.

All the identified markers showed a decrease after the
onset of VIMS. This may represent our brain’s physiological
response to VIMS. Note that the physiological markers
presented by some other studies also showed decreases after
the occurrence of VIMS [17, 42]. They suspected that it may
be caused by the decline of subjects’ alertness level [42] or
depressed brain activity [44, 57].

Although we found significant differences between
no-VIMS and VIMS states, it is hard to conclude that these
markers can be directly used for precise detection of VIMS
onset or estimation of VIMS severity in real time, because
our analyses focused only on differences occurred between
no-VIMS and VIMS states.

In addition, changes in thesemarkers are not a necessary
and sufficient condition for VIMS occurrence. This is
because some VIMS-like symptoms that occur in certain
situations may be related to factors other than VIMS
(‘‘various mental conditions’’), or even have nothing to do
with VIMS [61].

Furthermore, we do not know the exact physiological
mechanism of GF, PSE, and KC changes to the VIMS
level scoring. For example, Wei et al. have shown that
changes in the alertness level were monotonically related
to changes in the EEG power spectrum in the theta and
alpha bands [62]; Lin et al. have shown that the improved
behavioral performance was accompanied by concurrent
power suppression in the theta and alpha bands in the
occipital cortices [63]. Thus, more evidence is needed to
confirm the causality of EEG markers.

In current study paradigm, it is difficult to determine
if the measured EEG signal difference is contaminated by
the emotional or physical impact of the task (e.g., driving)
or truly by the onset of VIMS. Therefore, our results should
be verified further in a more controlled experimental design
where only passive visual stimulation is provided.

Finally, tomake the findingmore useful, further analysis
should be developed to enable detection of VIMS onset
and estimation of VIMS level in real time. Currently, we
are working on designing a machine-learning approach to
handle such a task.
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